Nuclear data in the Cosmos from the Interacting Shell Model

Sofia Karampagia Celebrating 75 Years of the Nuclear Shell Model and Maria Goeppert-Mayer

Support from NASA grant 80NSSC20M0124, MSGC is acknowledged

The development of the Nuclear Shell Model

Maria Goeppert-Mayer and Hans Jensen proposed the extreme single particle model: individual nucleons move independently in a mean-field potential.

The "magic numbers" 2, 8, 20, 28, 50, 82, 126, 184 are reproduced after the inclusion of the spin-orbit term.

Mayer, M.G ., Jensen, J.H.D., Elementary Theory of Nuclear Structure New York: Wiley (1955)

The development of the Nuclear Shell Model

Later, the shell model included the interactions between the (valence) nucleons.

$_{10}^{20}Ne -$ sd valence space

Traditionally, the effective interaction for the valence space has been obtained by either fitting the TBME to selected experimental spectra or G-matrices obtained by a bare NN potential with core polarization corrections.

More methods of deriving shell model Hamiltonians have been developed and will be presented at the symposium, as well recent developments in no-core shell model and ab-initio methods.

Nuclear reaction processes responsible for the synthesis of elements

Elements rich in neutrons: neutron capture nucleosynthesis, competition between neutron capture reactions and β decays.

Elements rich in protons: proton/alpha captures photodisintegration proton capture/neutron induced reactions

A. Arcones *et al*. PPNP 94, 1 (2017)

Solar abundance distributions for heavyelement isotopes

- Simulations of elemental abundance distributions are obtained through nucleosynthesis reaction network codes.
- Astrophysical conditions of the site where the nucleosynthesis occurs.
- Nuclear properties of participating nuclei. (For instance, peaks in the abundance distribution correlated to neutron shell closures.)

r-process

- r-process: Responsible for the production of half of the elements heavier than iron, proceeding via successive neutron captures and beta decays.
- Identifying the astrophysical sites of the r-process remains challenging. Modeling the r-process abundance distribution is subject to uncertainties stemming from the challenges modeling these astrophysical environments.
- Early r-process, high temperatures, statistical equilibrium between neutron capture and dissociation reactions. Neutron separation energies, determined by nuclear masses are important in that phase.
- When the available free neutrons are drastically reduced, the statistical equilibrium fails. The competition between neutron captures, photodissociation and β-decay makes neutron capture rates important.

Neutron Capture rates within the statistical Hauser-Feshbach model

- For nuclei participating in the r-process the experimental derivation of neutron capture rates is not possible. Neutron capture rates are predicted theoretically through the Hauser-Feshbach statistical model. (Neutron and target combine to form a compound system which subsequently decays by emitting γ-rays.)
- Main ingredients for neutron capture rate calculations within the statistical Hauser-Feshbach approach:
	- ─ Nuclear Level Densities
	- ─ γ-strength functions (γSF)
	- ─ Optical model potentials
- Hauser-Feshbach approach not applicable for low neutron capture Q values.

Impact of NLDs, γSF in neutron capture rates

Variations of neutron capture rates at 1.5 GK

S. N. Liddick *et al*. PRL 116, 242502 (2016)

γ-ray strength function

Low energy enhancement
The γSF describes the average energy distribution of γ-rays emanating from high energy states of the nucleus.

Configuration-interaction shell model calculations using effective interactions show an **M1 contribution** to the low-energy enhancement.

B. A. Brown *et al*, PRL 113, 252502 (2014) S. Karampagia *et al*, PRC 95, 024322 (2017)

Configuration-interaction shell model calculations using effective interactions and recent calculations using the Shell model Monte Carlo method show a reduction in the **M1** low energy enhancement with increasing neutron number as another peak emerges, at the location of scissors mode resonance.

P. Fanto *et al*, PRC 109, L031302 (2024)

Nuclear level densities (NLD)

Definition: number of levels per energy interval

Experimental NLDs

- Low energy discrete experimental levels
- Level density from neutron resonance spacings at the neutron separation energy (available only for specific spins)
- Spin distribution: $f(J,\sigma) = \frac{2J+1}{2\sigma^2}$ $2\sigma^2$ $e^{-\frac{J(J+1)}{2\sigma^2}}$ $\overline{{}^{2\sigma^2}}$, σ : spin cut-off parameter
- Oslo method and β-Oslo technique
- Particle evaporation from compound nuclear reactions

A. Schiller *et al*, N. Inst. Meth. Phys. Res., Sect. A 447, 498 (2000). A. C. Larsen et al, Nuclei in the Cosmos XV. Springer Proc. in Phys., vol 219. Springer. H. Vonach,, BNL Report No. BNL-NCS-51694, p. 247.

NLD Models in Hauser-Feshbach codes

- Phenomenological: Fermi gas model, Constant temperature model, Model parameters must be determined from the available experimental data or from empirical expressions, knowledge of the spin distribution and spin cut-off parameter σ is required
- Microscopic models: built on combinatorics and the HFB model

H. A. Bethe, PR 50 332 (1936) A. Gilbert et al., CJP 43 1248 (1965) T. Ericson, Adv Phys 9 425 (1960) S. Goriely et al., PRC 78 064307 (2008) S. Hilaire et al., PRC 86 064317 (2012)

NLDs from Shell model

- NLDs from configuration interaction shell model calculations using conventional diagonalization are only possible in the sd-shell.
- Shell Model Monte Carlo; mid-mass and heavy nuclei

Y. Alhassid et al., PRL 99 162504 (2007)

Moments method – based on the CI shell model

Computation of the first two moments of the Hamiltonian; does not require the diagonalization of the involved matrices

The calculated NLD of each proton/neutron configuration is assumed to be a gaussian.

Moments method – comparison with experimental/theoretical NLDs

GRANDVALLEY State University

Astrophysical reaction rates – Moments Method - TALYS

Moments method calculations in pf model

Comparison between different NLD models in

Challenges

- Shell model level densities have a finite excitation range $(\sim 12 \text{ MeV})$; need for an algorithm to continue to higher excitation energies
- Negative/positive parity levels
- Ground state is required; directly from a shell model calculation, other extrapolation techniques
- Availability of reliable shell model interactions (away from stability what?)

Thank you

Model spaces

Tested with

- $sd 0d_{5/2}$, $0d_{3/2}$, $1s_{1/2}$
- *pf* $0f_{7/2}$, $0f_{5/2}$, $1p_{3/2}$, $1p_{1/2}$
- *jj44* $0f_{5/2}$, 1 $p_{3/2}$, 1 $p_{1/2}$, 0 $g_{9/2}$
- $pf + 0g_{9/2}$

Extensions

…

 $-$ *jj55* – $0g_{7/2}$, 1 $d_{5/2}$, 1 $d_{3/2}$, 2 $s_{1/2}$, 0 $h_{11/2}$

•Any model space for which **an effective shell model Hamiltonian is available**

MM vs Exact SM calculations NLDs

MM vs Experimental NLDs

S. Karampagia et al., ADNT 1, 120 (2017)

MM vs other models & Oslo method

R. Sen'kov et al., PRC 82 024304 (2010) S. Goriely et al., PRC 78 064307 (2008)

