Frontiers in Explosive Nuclear Astrophysics – Gavin Lotay

The Need for Nuclear Physics

Reactions on RADIOACTIVE nuclei drive explosive astrophysical environments

27Si

²⁵Mg

26Si

25 A I

²⁴Mg

²³Na

²²Ne

25Si

²⁴Al

²³Mg

 ^{22}Na

²¹Ne

²³Al

²²Mg

²¹Na

²⁰Ne

²⁸Si

²⁷Al

²⁶Mg

(p,α).

(p, y)

AХ

 (β^+)

Stellar Reaction Rates

Stellar Reaction Rates

Stellar Reaction Rates

The Origin of Cosmic γ**-ray Emitters**

Outside the Reach of Direct Measurements – Energies

Comparison with the USD Shell Model Energies

Comparison with the USD Shell Model Energies

The Shell Model may not (currently) be the best tool to determine resonance energies

Outside the Reach of Direct Measurements – Resonance Strengths

<u>7469 (1/2, 5/2)</u>⁺ [$E_r = 6 \text{ keV}$]

The Use of Mirror Symmetry

The structures of mirror nuclei are found to be nearly identical

The Use of Mirror Symmetry

The ²⁶Al(*d*,*p*)²⁷Al transfer reaction at TRIUMF

Comparison with USD Shell Model Spectroscopic Factors

Comparison with USD Shell Model Spectroscopic Factors

Understanding the Light Curves of Type-I X-ray Bursts

- Detailed models of X-ray burst nucleosynthesis indicate reactions around key waiting points strongly influence the resulting light curves
- In particular, the ${}^{48}Cr(p,\gamma){}^{49}Mn$ reaction has been highlighted as key [R.H. Cyburt et al., ApJ 830, 55 (2016)]

Gamma-ray Spectroscopy Study of ⁴⁹Mn @ ANL

 A 75 MeV beam of ⁴⁰Ca ions (~20 pnA) produced by the Argonne ATLAS accelerator was used to bombard a ~200 μg/cm² thick target of ¹¹B target to populate excited states in ⁴⁹Mn via ¹¹B(⁴⁰Ca,2*n*) and ⁴⁹Cr via ¹¹B(⁴⁰Ca,1*p*1*n*)

The Argonne Fragment Mass Analyser used to Transmit A =49 recoils **GRETINA** γ -ray tracking array used to detect prompt γ rays at the target position

Gamma-ray Spectroscopy Study of ⁴⁹Mn @ ANL

Gamma-ray Spectroscopy Study of ⁴⁹Mn @ ANL

1

• However, newly constrained uncertainties removed the possibility of a waiting point at A the *rp* process

Study of ⁴⁹Mn @ ANL

Time (s)

C. O'Shea, G. Lotay *et al.*, Phys. Lett. B **854**, 138740 062701 (2024)