Isospin Symmetric Island of Inversion at the N=Z line

Duy Duc Dao, Frédéric Nowacki

Celebrating 75 Years of the Nuclear Shell Model and Maria Goeppert-Mayer

19–21 juil. 2024 Argonne National Laboratory Fuseau horaire US/Central

Entrer le texte à rechercher

Multipole expansion: $\mathcal{H} = \mathcal{H}_{monopole} + \mathcal{H}_{Multipole}$

Spherical mean-field
 Horopole: Evolution of the spherical single particle levels
 A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

$\mathcal{H}_{multipole}$:

- Correlations
- Energy gains
- Pairing (SU2)
- Quadrupole (SU3/pSU3/qSU3)

semi-magic (n-n) (p-p) p-n in H.O. or $\Delta j = 2$

M. Dufour and A. Zuker (PRC 54 1996 1641)

Multipole expansion: $\mathcal{H} = \mathcal{H}_{monopole} + \mathcal{H}_{Multipole}$

Spherical mean-field
 H_{monopole}: Evolution of the spherical single particle levels
 A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

- Correlations
 Energy gains
- Pairing (SU2)
- Quadrupole (SU3/pSU3/qSU3)

Multipole expansion: $\mathcal{H} = \mathcal{H}_{monopole} + \mathcal{H}_{Multipole}$

Spherical mean-field
 Horopole: Evolution of the spherical single particle levels
 A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

 $\mathcal{H}_{multipole}$:

- Correlations
 Energy gains
- Pairing (SU2)
- *Quadrupole (SU3/pSU3/qSU3)*

Multipole expansion: $\mathcal{H} = \mathcal{H}_{monopole} + \mathcal{H}_{Multipole}$

Spherical mean-field
 Horopole: Evolution of the spherical single particle levels
 A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

 $\mathcal{H}_{multipole}$:

- Correlations
 Energy gains
- Pairing (SU2)
- *Quadrupole (SU3/pSU3/qSU3)*

Multipole expansion: $\mathcal{H} = \mathcal{H}_{monopole} + \mathcal{H}_{PP} + \mathcal{H}_{QQ}$

Spherical mean-field
 H_{monopole}: Evolution of the spherical single particle levels
 A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

H_{multipole}:

- Correlations
- Energy gains
- Pairing (SU2)
- Quadrupole (SU3/pSU3/qSU3)

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

ments

$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

ments

\diamond Strongly deformed states at N = Z:

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

FIG. 3. Schematics of the $B(E2\downarrow)$ values for the N = Z nuclei

- ZBM3 valence space: extension of JUN45 to pseudo-SU3 + Quasi-SU3
- New effective interactions:
 - Realistic TBME + Monopole "3N" constraints"
 - ab-initio N3LO (2N) interaction
 - ongoing ab-initio N3LO (2N) + 3N (InI) interaction

Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: $|\Psi_{
m eff}
angle = \sum_{i} f_{i} |\Phi_{i}
angle$

 $d_{3/2}$

s1/2 d5/2 d5/2 d5/2 d5/2

 $\mathcal{P}_{\alpha}^{(J)}(\mathcal{K}) = \sum_{q} \left| \mathcal{M}_{\alpha}^{(J)}(q,\mathcal{K}) \right|^{2}$

Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: $|\Psi_{\text{eff}}\rangle = \sum_{i} f_{i} |\Phi_{i}\rangle$

- 1) Deformed Hartree-Fock (HF) Slater determinants
- 2) Restoration of rotational symmetry
- 3) Mixing of shapes:

$|\Psi_{\rm eff}\rangle$ = + + + - ·

Intrinsic/Laboratory Description

• Deformation structure of nuclear states: $\{J^{\pi}_{\alpha}\}, q = (\beta, \gamma)$

$$\mathcal{M}^{(J)}_{lpha}(q, {\cal K}) = \sum_{q', {\cal K}'} [\hat{N}^{1/2}]^{(J)}_{{\cal K}'{\cal K}}(q', q) \, f^{(J)}_{lpha}(q', {\cal K}')$$

♦ Probability of a configuration (β, γ) :

$$\mathcal{P}_{\alpha}^{(J)}(q) = \sum_{K} \left| \mathcal{M}_{\alpha}^{(J)}(q,K) \right|^2$$

• particle-hole interpretation:

• K-quantum numbers:

$$P_{\alpha}^{(J)}(K) = \sum_{q} \left| M_{\alpha}^{(J)}(q,K) \right|^2$$

M-scheme

Recent developments of the DNO shell model

Variation-After-Projection DNO-SM approach

$$\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle = \mathcal{E}_{\alpha}^{(J)}|\Psi_{\alpha}^{JM}\rangle \Longrightarrow \delta \frac{\langle \Psi_{\alpha}^{JM}|\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle}{\langle \Psi_{\alpha}^{JM}|\Psi_{\alpha}^{JM}\rangle} = 0, \quad |\Psi_{\alpha}^{JM}\rangle = \sum_{q,K} \underbrace{f_{\alpha}^{(J)}(q,K)}_{q,K} \mathcal{P}_{MK}^{J} \underbrace{|\Phi(q)\rangle}_{q,K}$$

Double variation AFTER Angular Momentum Projection: Mixing coefficient

Slater state

◊ DNO-SM(VAP)

- *q* = 1, 2, 3, ...
- $J^{\pi}_{\alpha} = \mathbf{0}^+_1, \ldots$

Best energy-favoring Slater states

DNO-SM(VAP)

DNO-SM(VAP)

First "SM" calculations for superheavies !!!

\diamond Strongly deformed states at N=Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

	B(E2)(e ² .fm ⁴)						
nucleus	Np-Nh*	ZRP	PHF	Exp.	DNO-SM*	SM	
⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1740 ⁺⁵⁸⁰ -430	1765	-	
⁸⁶ Mo	0p-0h 2p-2h 4p-4h 6p-6h	542 1030 1416 1858	196 871 1179 1655	707(71)	980	731	

\diamond Strongly deformed states at N=Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

		B(E2)(e ² .fm ⁴)					
nucleus	Np-Nh*	ZRP	PHF	Exp.	DNO-SM*	SM	
⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1740 ⁺⁵⁸⁰ -430	1765	-	
⁸⁶ Mo	0p-0h 2p-2h 4p-4h 6p-6h	542 1030 1416 1858	196 871 1179 1655	707(71)	980	731	

\diamond Strongly deformed states at N=Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

		B(E2)(e ² .fm ⁴)				
nucleus	Np-Nh*	ZRP	PHF	Exp.	DNO-SM*	SM
⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1740 ⁺⁵⁸⁰ -430	1765	-
	0p-0h	542	196			
⁸⁶ Mo	2p-2h 4p-4h	1030 1416	871 1179	707(71)	980	731
	6p-6h	1858	1655			

\diamond Strongly deformed states at N = Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

\diamond Strongly deformed states at N = Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

J. Ha, F. Recchia et al., submitted to NATURE

PRL 105, 032501 (2010)

PHYSICAL REVIEW LETTERS

Three-Body Forces and the Limit of Oxygen Isotopes

Takaharu Otsuka,^{1,2,3} Toshio Suzuki,⁴ Jason D. Holt,⁵ Achim Schwenk,⁵ and Yoshinori Akaishi⁶

FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from ¹⁶O, including experimental values of the bound 16– 24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a G matrix and including FM 3N forces due to Δ excitations, and (c) from low-momentum interactions $V_{low k}$ and including chiral EFT 3N interactions at N²LO as well as only due to Δ excitations. [25]. The changes due to 3N forces based on Δ excitations are highlighted by the shaded areas. (d) Schematic illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the ¹⁶O core.

PRL 109, 032502 (2012)

Evolution of Shell Structure in Neutron-Rich Calcium Isotopes

 G. Hagen, ^{1,2} M. Hjorth-Jensen, ^{3,4} G. R. Jansen, ³ R. Machleidt, ⁵ and T. Papenbrock^{1,2}
 ¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 ²Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
 ³Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway
 ⁴National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ⁵Department of Physics, University of Idaho, Moscow, Idaho 83844, USA (Received 16 April 2012; published 17 July 2012)

FIG. 2 (color online). (Excitation energies of $J^{\pi} = 2^+$ states in the isotopes ^{42,48,50,52,54,56}Ca (experiment: black circles, theory: red squares)

Shell closures and 2N forces only

PHYSICAL REVIEW C 74, 061302(R) (2006)

Shell-model phenomenology of low-momentum interactions

Achim Schwenk1,* and Andrés P. Zuker2,†

¹Nuclear Theory Center, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408, USA ²Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France (Received 14 January 2005; revised manuscript received 20 September 2006; published 12 December 2006)

no Spin-orbite shell closures in ¹²C, ²²O, ⁴⁸Ca, ⁵⁶Ni
too strong H. O. shell closures ¹⁶O, ⁴⁰Ca, ... and ⁸⁰Zr !!!

N3LO NN calculations

		B(E2)(e ² .fm ⁴)				
nucleus	NpNh*	ZRP	PHF	Exp.	DNO-SM	N3LO
⁸⁰ Zr	4p-4h 8p-8h 12p-12h	587 1713 2663	637 1509 2396	1910(180)	2325	0.03
⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1740^{+580}_{-430}	1740	174

N3LO NN calculations

Three body forces and persistence of spin-orbit shell gaps in medium-mass nuclei: Towards the doubly magic ⁷⁸Ni,

K. Sieja, F. Nowacki

Phys. Rev. C85, 051301(R) (2012)

⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1740 ⁺⁵⁸⁰ ₋₄₃₀	1740	174
⁸⁰ Zr	8p-8h 12p-12h	1713 2663	1509 2396	1910(180)	2325	0.03

Isospin Symmetric Island of Inversion

Summary

- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics.
- New "island of inversion" or "island of deformation" present for neutron-rich systems show up also at N=Z line with very deformed rotors dominated by Many-particles-Many-holes configurations.
- New spectroscopy for ⁸⁴Mo and ⁸⁶Mo and first fingerprint of 3N forces in deformed systems
- Around A~ 80, an "island of enhanced collectivity" show very deformed rotors dominated by Many-particles-Many-holes configurations.
- Ongoing NN + 3N(InI) ab-initio calculations

Special thanks to:

- G. Martinez-Pinedo, A. Poves, S. Lenzi
- A. Gade, O. Sorlin, A. Obertelli