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Antoine Belley 
75th Anniversary of the Shell Model Symposium 

Collaborators: Jack Pitcher, Takayuki Miyagi, Ragnar 
Stroberg, Jason Holt

Ab Initio theory towards 
reliable neutrinoless 
double beta decay NMEs.
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2νββ vs 0νββ 
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 *NME : Nuclear matrix elements
**LNV : Lepton number violation
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Lepton Number Violation 
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Lepton Number Violation 
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Lepton Number Violation 
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Lepton Number Violation 
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Models can be differentiated but require the uncertainty on the NMEs for each 
mechanism to be less than 15%, see Gráf et al., Phys. Rev. D 106, 035022.
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Current calculations from phenomenological models have a large spread in results. 
Status of 0νββ-decay Matrix Elements

Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)
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Current calculations from phenomenological models have a large spread in results. 
Status of 0νββ-decay Matrix Elements

8

All models missing essential physics!

Impossible to assign theoretical uncertainties!

Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)



Show how by using ab initio methods that 
rely on systematically improvable 
expansions, a coherent picture can be 
achieved for the NMEs.

Goal of the thesis 9



▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential 
▪ Solving the nuclear many-body problem 
▪ Deriving consistent operators with the nuclear interactions 

▪ Obtaining a reliable result: 
▪ Uncertainty Quantification 

NME = ⟨ψf |O |ψi⟩

List of challenges
10
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▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential ( -EFT) 
▪ Solving the nuclear many-body problem (VS-IMSRG) 
▪ Deriving operators consistently with the nuclear interactions (EFTs) 

▪ Obtaining a reliable result: 
▪ Uncertainty quantification 

NME = ⟨ψf |O |ψi⟩

χ

List of challenges
15
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-EFTχ
Expansion order by order of the nuclear forces
Reproduces symmetries of low-energy QCD using nucleons as fields and mesons as force carriers. 

The different low energy coupling 
constants (LECs) are fitted to few-
nucleon data to absorb the effect 
of higher order terms

16

NN 3N 4N

LO
(Q/⇤�)0

NLO
(Q/⇤�)2

N2LO
(Q/⇤�)3

N3LO
(Q/⇤�)4

+ ... + ...

+ ...
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Bare Hamiltonian Valence-space is 
decoupled

17

Core is decoupled

Ĥ(0) Ĥ(s) = eΩc(s)Ĥ(0)e−Ωc(s)
Ĥ(s) = eΩv(s)Ĥce−Ωv(s)

Ĥc = eΩc(∞)Ĥ(0)e−Ωc(∞)
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Bare Hamiltonian Valence-space is 
decoupled

18

Core is decoupled

Ĥ(0) Ĥ(s) = eΩc(s)Ĥ(0)e−Ωc(s)
Ĥ(s) = eΩv(s)Ĥce−Ωv(s)

Ĥc = eΩc(∞)Ĥ(0)e−Ωc(∞)

Truncations
• emax: Truncations for 1-body states. Is given by 2n + l.
• E3max: Truncations for 3-body forces. Optimally E3max = 3 x emax.
• IMSRG(2): All operators are truncated to the 2-body level.



Obtaining a result

19
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Results with 5 different input Hamiltonians to study uncertainty from interaction choice. 

Ab Initio 0νββ Decay: 48Ca, 76Ge and 82Se

Belley, et al., PRL126.042502

20
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Ab Initio 0νββ Decay: 100Mo, 130Te and 136Xe
100Mo, 130Te, 136Xe: major players in global searches with Cupid, SNO+, and nEXO.
Increased E3max capabilities allow first converged ab initio calculations [EM1.8/2.0, , N3LOLNL]. ΔGO 21

Belley, et al., arXiv:2307.15156 

https://arxiv.org/abs/2307.15156
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Correlation Between Observables
In 76Ge:

Only correlation seen in multiple nuclei is with the 
unobserved double Gamow-Teller transition NME.

Belley et al., arXiv:2210.05809
22

https://arxiv.org/abs/2210.05809


▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential ( -EFT) 
▪ Solving the nuclear many-body problem (VS-IMSRG) 
▪ Deriving operators consistently with the nuclear interactions (EFTs) 

▪ Obtaining a reliable result: 
▪ Uncertainty quantification 

NME = ⟨ψf |O |ψi⟩

χ

List of challenges
23



Uncertainty 
Quantification

24
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Propagating the LECs Error

25

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few-nucleon data,  i.e.  each LEC has an uncertainty 
 associated with it.

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα
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Propagating the LECs Error

26

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few-nucleon data,  i.e.  each LEC has an uncertainty 
 associated with it. 

How to propagate  to ?

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

δα δM0νββ



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Propagating the LECs Error

27

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few-nucleon data,  i.e.  each LEC has an uncertainty 
 associated with it. 

How to propagate  to ? 

Bayesian statistics!

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

δα δM0νββ



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Bayesian Approach

prob(y |yk, I ) ∝ prob(yk |y, I ) × prob(y | I )

We read  as 
probability of A given B

prob(A |B)

Value of the 
nuclear matrix 

elements
(what we are 
interested in)

Different values 
obtained with 

different 
interactions/

methods

Any other relevant 
information we 

have beforehand

Posterior distribution
Probability distribution for the 
final value given the data 
and our previous knowledge 
(what we want to obtain).

For finite samples, we use 
sampling/importance 
resampling to obtain the final 
PDF.

Likelihood
Probability that this sample gives a 
result that is representative of 
experimental values.

Chosen to be a multivariate normal 
centred at the experimental value 
for few observables we have data 
on (calibrating observables).

Prior
Assume a uniform prior for low 
energy constants of natural 
size. Then use history 
matching to remove 
implausible samples from the 
set. Assume each of the 
remaining samples to be as 
likely as the others.

28
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Procedure for UQ in the Bayesian Approach

1. Generate a set of LECs samples equally distributed in a reasonable range.

2. Using history matching, reduce the number of samples in the set to “non-implausible” samples.

3. These “non-implausible” samples are now your prior and are taken to be equally probable.

4. Assign a likelihood to each sample by comparing their performance for certain calibrating observables. 
To give sensible estimate of the target observable, the calibrating observables should correlate with the 
target observable.

5. Resample the LECs a large number of times (>106) with probability of being sampled given by the 
likelihood of the sample (sampling/importance resampling).

6. Evaluate the target observables with the resampled set to obtain a posterior predictive distribution. 

7. Other sources of error can be sampled and added independently in the previous step. Those are taken 
to be normally distributed. 

29
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Procedure for UQ in the Bayesian Approach

1. Generate a set of LECs samples equally distributed in a reasonable range.

2. Using History Matching, reduce the number of samples in the set to “non-implausible” samples.

3. These “non-implausible” samples are now your prior and are taken to be equally probable.

4. Assign a likelihood to each sample by comparing their performance for certain calibrating observables. 
To give sensible estimate of the target observable, the calibrating observables should correlate with the 
target observable.

5. Resample the LECs a large number of times (>106) with probability of being sampled given by the 
likelihood of the sample. (Sampling/Importance Resampling)

6. Evaluate the target observables with the resampled set to obtain a posterior predictive distribution. 

7. Other sources of error can be sampled and added independently in the previous step. Those are taken 
to be normally distributed. 

30

The catch

Need to be able to compute the observables for all the non-
implausible samples.

Due to the very large cost of many-body methods, this 
becomes very quickly non-feasible as the number of samples 

grows.
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The MM-DGP Algorithm

• Deep Gaussian Processes [1] link multiple Gaussian 
Processes inside an architecture similar to neural 
network to improve results.

• This can be used to model the difference function 
between the low- and high-fidelity by including outputs 
of the previous fidelity as an input of higher fidelity by 
taking a kernel of the form:

• This was developed for single-output Gaussian 
Processes and we have adapted it for multi-output 
case, creating the MM-DGP: Multi-output Multi-fidelity 
Deep Gaussian Process.

K(x, x) = k(x, x) ⋅ k( fprev(x), fprev(x)) + kbias(x, x)

[1] Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, Javier González arXiv:1903.07320  (2021).


31

https://arxiv.org/search/stat?searchtype=author&query=Cutajar%2C+K
https://arxiv.org/search/stat?searchtype=author&query=Pullin%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Damianou%2C+A
https://arxiv.org/search/stat?searchtype=author&query=Lawrence%2C+N
https://arxiv.org/search/stat?searchtype=author&query=Gonz%C3%A1lez%2C+J
https://arxiv.org/abs/1903.07320
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Using -full chiral EFT interactions at N2LO:Δ

The MM-DGP Algorithm: Energies

76Ge

Root Mean Square 
Error = 11 MeV 

32

50 training points
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The MM-DGP Algorithm: 0νββ NMEs
Using -full chiral EFT interactions at N2LO:Δ

76Ge

33

50 training points

Root Mean Square 
Error = 0.13
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The MM-DGP Algorithm: GSA

34
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The MM-DGP Algorithm: GSA

35

Results for energies are consistent with results of 
physics-based emulators of the coupled cluster method.
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The MM-DGP Algorithm: GSA

36

The total matrix element mostly depends on one LEC!
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The MM-DGP Algorithm: GSA

37

The short-range matrix element however sees other contributions from 
LECs associated to the short-range nuclear interaction.
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Correlation with Phase Shifts

Belley, Pitcher, et al. in prep.

38

Strong correlation for energies > 50 MeV

The size of matrix elements is mostly 
constrained by the interaction between 
the two nucleons that undergo the 
decay, given they are close enough from 
each other. 

⇒
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Posterior Distribution of the NMEs

• Use 8188 “non-implausible” samples obtain by Jiang, W. G. et al. (Phys. Rev. C 109, 
064314).

• Many-body problem is “solved” with the MM-DGP.

• Consider all sources of uncertainties by taking:

where the ’s are the errors coming from different sources and are assumed to be 
normally distributed and independent.

• Interactions are weighted by the  neutron-proton phase shifts at 50 MeV and 
observables for mass A=2-4,16.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵ

1S0

39
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Comparing with Other Interactions

40

Belley, et al., Phys. Rev. Lett. 132, 182502
 

M0νββ = 2.60+1.28
−1.36
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0νββ-decay Matrix Elements: The Complete Picture

41
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Ab Initio 0νββ Decay: Effect on Experimental Limits

42

Experimental limits: GERDA (76Ge) Phys. Rev. Lett. 125, 252502, CUPID-Mo (100100) Eur. Phys. J. C 82  11, 1033, 
CUORE(130Te) Nature  604,  53–58 and Kamland Zen (136Xe) Phys. Rev. Lett. 130, 051801.
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Ab Initio 0νββ Decay: Effect on Future Reach

43

Expected limits: LEGEND (76Ge) arXiv:2107.11462, CUPID (100100) arXiv:1907.09376, 
SNO+(130Te) arXiv:2104.11687and nEXO (136Xe) J. Phys .G 49 1, 015104.

https://arxiv.org/abs/2107.11462
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1. Computed first ever ab initio NMEs of  
isotopes of  experimental interest as a first 
step towards computing NMEs with reliable 
theoretical uncertainties. 

2. Computed NMEs with multiple interactions 
for  48Ca, 76Ge, 82Se, 100Mo, 130Te and 136Xe. 

3. Studied correlation of  the NMEs with 
multiple other nuclear observables. 

4. Developed an emulator for the VS-IMSRG 
based on Gaussian Processes. 

5. Obtained the first statistical uncertainty 
for the NMEs which includes all sources of  
errors in the calculation.

Summary
44
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Questions?

abelley@triumf.ca

45
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Using Gaussian Process as an Emulator 

• Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

• Want to infer the distribution of potentially unobserved Y* points from the observed points Y. This can be 
done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))

μ K(x, x)

PY*|Y ∼ 𝒩 (μ*Y + ΣX*XΣ−1
XX(Y − μY), ΣX*X* − ΣX*XΣ−1

XXΣXX*)
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Using Gaussian Process as an Emulator 

• Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

• Want to infer the distribution of potentially unobserved Y* points from the observed points Y. This can be 
done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))

μ K(x, x)

PY*|Y ∼ 𝒩 (0+ΣX*XΣ−1
XX(Y−0), ΣX*X* − ΣX*XΣ−1

XXΣXX*)
Normalizing inputs Only need to optimize 

hyperparameters of !K(x, x)
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Using Gaussian Process as an Emulator 

König, et al., PLB 2020.135814 
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Using Gaussian Process as an Emulator 

• Multi-Task Gaussian Process: Uses multiple correlated outputs from the same 
inputs by defining the kernel as . This allows us to increase the 
number of data points without needing to do more expensive calculations.

• Multi-Fidelity Gaussian Process: Uses few data points of high fidelity (full IMSRG 
calculations) and many data points of low fidelity (e.g. Hartree-Fock results, lower 
emax). The difference function is fitted by a Gaussian Process in order to predict 
the value of full calculations using the low fidelity data points. This assumes a 
linear scaling between the low- and high-fidelity calculations.

Kinputs ⊗ Koutputs
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What Next?

1. Further the use of the MM-DGP algorithm to do large search of correlation for multiple 
nuclear observables in multiple isotopes.

2. :

• Reduction of theoretical uncertainties.

• Extension to other  mechanisms.

• Extension to double neutrinoless electron capture.

3. Symmetry violation:

• Applying the emulator to sample parameter space of the parity violating (PV)  and 
time violating (TV) nuclear interaction and collaborate closely with experimental 
efforts to fix these parameters.

0νββ

0νββ
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Choosing a Likelihood

Likelihood 1: Only contains 
 neutron-proton phase 

shifts at 50 MeV.
1S0

Likelihood 2: Contains  
neutron-proton phase 
shifts at 50 MeV  and 
observables for A=2-4.

1S0

Likelihood 3: Contains  
neutron-proton phase 
shifts at 50 MeV  and 
observables for A=2-4,16.

1S0

A2-4: E(2H), rp(2H), Q(2H), E(3H), E(4He), rp(4He)            A16: E(16O), rp(16O)
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Emulator Error

This error is given directly by the Gaussian 
Process and depends on the LECs (i.e. each 
predicted point has its own error).

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator
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EFT Truncation Error

Error due to the truncation of the nuclear 
interactions (the samples are truncated at 
N2LO, including delta excitations).

Use EMN interaction at NLO, N2LO, N3LO 
and N4LO, without delta excitations, to verify 
convergence of chiral expansion.

Using the -full interaction of this work, only 
NLO and N2LO orders are available. Using 
expansion from BUQEYE collaboration, we 
get  = 0.3.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

Δ

ϵEFT
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Many-Body Error

Error due to the truncation of the many-body 
method. This is studied by comparing the 
results of the IM-GCM and VS-IMSRG using 
the magic interaction. 

This error is surprisingly large as we find 
 = 0.88. 

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵmany−body
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Operator Error

Error due to the truncation of the operator in 
chiral expansion + closure energy correction 
+ value of the contact LEC.

Adding N2LO operators has very small 
contribution (< 0.2). Biggest contribution 
comes from determination of contact term. 

Total error amounts to  = 0.47.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵoperator



0νββ
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0νββ

   

[T0ν
1/2]

−1 = ∑
i

G0ν
i |M0ν

i |2 η2
i

n p

e�

LNV

n p

e�
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0νββ

   

[T0ν
1/2]

−1 = ∑
i

G0ν
i |M0ν

i |2 η2
i

n p

e�

LNV

n p

e�

Couplings to new physics: 
Majorana mass, New Heavy 
Particles Mass, Couplings to 
new bosons…
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0νββ

   

[T0ν
1/2]

−1 = ∑
i

G0ν
i |M0ν

i |2 η2
i

n p

e�

LNV

n p

e�

Couplings to new physics: 
Majorana mass, New Heavy 
Particles Mass, Couplings to 
new bosons…

The nuclear matrix element, 
dependent on the LNV 
mechanism and the isotope.
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0νββ

   

[T0ν
1/2]

−1 = ∑
i

G0ν
i |M0ν

i |2 η2
i

n p

e�

LNV

n p

e�

Couplings to new physics: 
Majorana mass, New Heavy 
Particles Mass, Couplings to 
new bosons…

The nuclear matrix element, 
dependent of the LNV 
mechanism and the isotope.

The phase space factor. 
Well under control.
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Lepton Number Violation

   

ℋW =
Gβ

2
[jμ

L J†
L,μ + ∑

α,β

ϵβ
α jαJ†

β]

Most general Lorentz invariant effective Hamiltonian:
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Lepton Number Violation

   

ℋW =
Gβ

2
[jμ

L J†
L,μ + ∑

α,β

ϵβ
α jαJ†

β]

Most general Lorentz invariant effective Hamiltonian:

Lepton currents
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Lepton Number Violation

   

ℋW =
Gβ

2
[jμ

L J†
L,μ + ∑

α,β

ϵβ
α jαJ†

β]

Most general Lorentz invariant effective Hamiltonian:

Hadron currents Lepton currents
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Lepton Number Violation

   

ℋW =
Gβ

2
[jμ

L J†
L,μ + ∑

α,β

ϵβ
α jαJ†

β]

Most general Lorentz invariant effective Hamiltonian:

Hadron currents Lepton currents

Standard V-A
weak interaction All other exotic

mechanisms
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Lepton Number Violation

   Since  decay is a 2nd order weak process:0νββ

𝒜0ν
i→f ∝ ⟨ f |T[ℋW(x1)ℋW(x2)] | i⟩

∝

n p

e�

n p

e�

W

W

n p

e�

n p

e�

W
n p

e�

n p

e�

⟨ f |T[ jμ
L J†

L,μ jν
LJ†

L,ν] +∑
α,β

ϵβ
αT[ jμ

L J†
L,μ jαJ†

β ] + ∑
α,β,γ,σ

ϵβ
αϵσ

γ T[ jαJ†
β jγJ†

σ] | i⟩
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Lepton Number Violation

   Since  decay is a 2nd order weak process:0νββ

n p

e�

n p

e�

W

W

n p

e�

n p

e�

W
n p

e�

n p

e�

+∑
α,β

ϵβ
αT[ jμ

L J†
L,μ jαJ†

β ] + ∑
α,β,γ,σ

ϵβ
αϵσ

γ T[ jαJ†
β jγJ†

σ] | i⟩

Models can be differentiated but require the uncertainty on the NMEs for each 
mechanism to be less than 15%, see Gráf et al., Phys. Rev. D 106, 035022.

𝒜0ν
i→f ∝ ⟨ f |T[ℋW(x1)ℋW(x2)] | i⟩

∝ ⟨ f |T[ jμ
L J†

L,μ jν
LJ†

L,ν]
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

(under closure approximation)
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

Vα(q) =
RNucl

2π2

hα(q)
q(q + Ecl)

Scalar potential
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

Vα(q) =
RNucl

2π2

hα(q)
q(q + Ecl) Closure energy



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

Vα(q) =
RNucl

2π2

hα(q)
q(q + Ecl)

hF(q) =
g2

V(q)
g2

V

hGT(q) =
1
g2

A [g2
A(q) −

gA(q)gP(q)q2

3mN
+

g2
P(q)q4

12m2
N

+
g2

M(q)q2

6m2
N ]

hT(q) =
1
g2

A [ gA(q)gP(q)q2

3mN
−

g2
P(q)q4

12m2
N

+
g2

M(q)q2

12m2
N ] .

Neutrino Potential
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

Vα(q) =
RNucl

2π2

hα(q)
q(q + Ecl)

hF(q) =
g2

V(q)
g2

V

hGT(q) =
1
g2

A [g2
A(q) −

gA(q)gP(q)q2

3mN
+

g2
P(q)q4

12m2
N

+
g2

M(q)q2

6m2
N ]

hT(q) =
1
g2

A [ gA(q)gP(q)q2

3mN
−

g2
P(q)q4

12m2
N

+
g2

M(q)q2

12m2
N ] .

SF = 1
SGT = σ1 ⋅ σ2

ST = − 3[(σ1 ⋅ ̂q)(σ2 ⋅ ̂q) − (σ1 ⋅ σ2)] .

Operator acting on spin
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Long-Range Matrix Elements

   M0ν
L = M0ν

GT − (gV

gA
)2M0ν

F + M0ν
T

M0ν
α = ⟨0+

f |Vα(q)Sα(q)τ+
1 τ+

2 |0+
i ⟩

Vα(q) =
RNucl

2π2

hα(q)
q(q + Ecl)

hF(q) =
g2

V(q)
g2

V

hGT(q) =
1
g2

A [g2
A(q) −

gA(q)gP(q)q2

3mN
+

g2
P(q)q4

12m2
N

+
g2

M(q)q2

6m2
N ]

hT(q) =
1
g2

A [ gA(q)gP(q)q2

3mN
−

g2
P(q)q4

12m2
N

+
g2

M(q)q2

12m2
N ] .

SF = 1
SGT = σ1 ⋅ σ2

ST = − 3[(σ1 ⋅ ̂q)(σ2 ⋅ ̂q) − (σ1 ⋅ σ2)] .
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Short-Range Matrix Elements

   M0ν
S = − 2gννM0ν

CT
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Short-Range Matrix Elements

   M0ν
S = − 2gννM0ν

CT

Unknown coupling 
constants.

Method by Cirigliano et al. 
(JHEP05(2021)289) 
proivdes a way to extract 
this coupling for ab initio 
methods with 30% accuracy 
for each nuclear interaction.
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Short-Range Matrix Elements

   M0ν
S = − 2gννM0ν

CT

Unknown coupling 
constants.

Method by Cirigliano et al. 
(JHEP05(2021)289) 
proivdes a way to extract 
this coupling for ab initio 
methods with 30% accuracy 
for each nuclear interaction.

Contact operator regularized with non-local 
regulator matching the nuclear interaction used:

M0ν
CT = ⟨0+

f |
RNucl

8π3 ( mNg2
A

4f 2
π )2exp( − (

p
Λint

)2nint)exp( − (
p′ 

Λint
)2nint) |0+

i ⟩



VS-IMSRG
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Similarity Renormalization Group

   

The general idea is to simplify the Hamiltonian by using a continuous unitary 
transformation:





where  parameterized the continuous transformation, and  is the starting 
Hamiltonian.


Ĥ(s) = Û(s)Ĥ(0)Û†(s)

s Ĥ(0)
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Similarity Renormalization Group: The Flow Equation

   
Since we are looking for a continuous transformation of , we are interested in finding how 
it changes as we vary the parameter, i.e.


                              


By inserting the identity in the form of , we get


            


Ĥ(s)

dĤ(s)
ds

=
dÛ(s)

ds
Ĥ(0)Û†(s) + Û(s)Ĥ(0)

dÛ†(s)
ds

̂I = Û†(s)Û(s)

dĤ(s)
ds

=
dÛ(s)

ds (Û†(s)Û(s))Ĥ(0)Û†(s) + Û(s)Ĥ(0)(Û†(s)Û(s)) dÛ†(s)
ds

=
dÛ(s)

ds
Û†(s)Ĥ(s) + Ĥ(s)Û(s)

dÛ†(s)
ds
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Similarity Renormalization Group: The Generator

   Note that  being unitary implies that


      


We now define 


                                      


where we call  the generator of the flow. We also note by the equation above 
that the generator is an anti-Hermitian operator.

Û(s)

d
ds (Û(s)Û†(s)) =

d
ds ( ̂I) = 0 ⇒

dÛ(s)
ds

Û†(s) = − Û(s)
dÛ†(s)

ds

̂η(s) ≡
dÛ(s)

ds
Û†(s) = − ̂η†(s)

̂η(s)
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Similarity Renormalization Group: Final Form of the Flow Equation

   We found the flow in the  parameter for our Hamiltonian to be 


                                      


Writing the expression above in terms of the generator we have defined, we get


                                        


We see that the last line is simply the commutator of the generator and the Hamiltonian. Thus, we 
get for the flow equation:


                                                           


s

dĤ(s)
ds

=
dÛ(s)

ds
Û†(s)Ĥ(s) + Ĥ(s)Û(s)

dÛ†(s)
ds

dĤ(s)
ds

=
dÛ(s)

ds
Û†(s)Ĥ(s) + Ĥ(s)Û(s)

dÛ†(s)
ds

= ̂η(s)Ĥ(s) + Ĥ(s) ̂η†(s)
= ̂η(s)Ĥ(s) − Ĥ(s) ̂η(s)

dĤ(s)
ds

= [ ̂η(s), Ĥ(s)]
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Going to second quantization, we define Fermionic creation and annihilation 
operators  and  acting on a reference state . The idea in the IMSRG is to 
use a reasonable approximation of the ground state as the reference state rather 
than the vacuum.


a†
i ai |Φ⟩

{a†
i aj} = a†

i aj − ⟨Φ |a†
i aj |Φ⟩

The IMSRG: Normal Ordering

Normal ordered operator Reference state

Contraction with reference state
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The IMSRG: NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]
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The IMSRG: NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]

One-body kinetic energy  ̂T[1]
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The IMSRG: NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]

Two-body kinetic energy  ̂T[2]
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The IMSRG: NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]

NN forces
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The IMSRG: NO2B Approximation

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]

3N forces
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The IMSRG: NO2B Approximation

Considering the nuclear Hamiltonian:

Ĥ = (1 −
1

̂A )∑
i

p̂2
i

2m
+

1
̂A ( −

1
m ∑

i<j

p̂i p̂j) + ̂V[2] + ̂V[3]

We can rewrite the Hamiltonian in terms of normal ordered operators as:

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}
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The IMSRG: NO2B Approximation

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}

E = (1 −
1
A )∑

a

⟨a | ̂T[1] |a⟩na +
1
2 ∑

ab

⟨ab |
1
A

̂T[2] + ̂V[2] |ab⟩nanb +
1
6 ∑

abc

⟨abc | ̂V[3] |abc⟩nanbnc
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The IMSRG: NO2B Approximation

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}

E = (1 −
1
A )∑

a

⟨a | ̂T[1] |a⟩na +
1
2 ∑

ab

⟨ab |
1
A

̂T[2] + ̂V[2] |ab⟩nanb +
1
6 ∑

abc

⟨abc | ̂V[3] |abc⟩nanbnc

fij = (1 −
1
A )⟨i | ̂T[1] | j⟩ + ∑

a

⟨ia |
1
A

̂T[2] + ̂V[2] | ja⟩na +
1
2 ∑

abc

⟨iab | ̂V[3] | jab⟩nanb
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The IMSRG: NO2B Approximation

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}

E = (1 −
1
A )∑

a

⟨a | ̂T[1] |a⟩na +
1
2 ∑

ab

⟨ab |
1
A

̂T[2] + ̂V[2] |ab⟩nanb +
1
6 ∑

abc

⟨abc | ̂V[3] |abc⟩nanbnc

fij = (1 −
1
A )⟨i | ̂T[1] | j⟩ + ∑

a

⟨ia |
1
A

̂T[2] + ̂V[2] | ja⟩na +
1
2 ∑

abc

⟨iab | ̂V[3] | jab⟩nanb

Γijkl = ⟨ij |
1
A

̂T[2] + ̂V[2] |kl⟩ + ∑
a

⟨ija | ̂V[3] |kla⟩na
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The IMSRG: NO2B Approximation

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}

E = (1 −
1
A )∑

a

⟨a | ̂T[1] |a⟩na +
1
2 ∑

ab

⟨ab |
1
A

̂T[2] + ̂V[2] |ab⟩nanb +
1
6 ∑

abc

⟨abc | ̂V[3] |abc⟩nanbnc

fij = (1 −
1
A )⟨i | ̂T[1] | j⟩ + ∑

a

⟨ia |
1
A

̂T[2] + ̂V[2] | ja⟩na +
1
2 ∑

abc

⟨iab | ̂V[3] | jab⟩nanb

Γijkl = ⟨ij |
1
A

̂T[2] + ̂V[2] |kl⟩ + ∑
a

⟨ija | ̂V[3] |kla⟩na

Wijklmn = ⟨ijk | ̂V[3] | lmn⟩
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The IMSRG: NO2B Approximation

Ĥ = E + ∑
ij

fij{a†
i aj} +

1
4 ∑

ijkl

Γijkl{a†
i a†

j alak} +
1
36 ∑

ijklmn

Wijklmn{a†
i a†

j a†
k anamal}

E = (1 −
1
A )∑

a

⟨a | ̂T[1] |a⟩na +
1
2 ∑

ab

⟨ab |
1
A

̂T[2] + ̂V[2] |ab⟩nanb +
1
6 ∑

abc

⟨abc | ̂V[3] |abc⟩nanbnc

fij = (1 −
1
A )⟨i | ̂T[1] | j⟩ + ∑

a

⟨ia |
1
A

̂T[2] + ̂V[2] | ja⟩na +
1
2 ∑

abc

⟨iab | ̂V[3] | jab⟩nanb

Γijkl = ⟨ij |
1
A

̂T[2] + ̂V[2] |kl⟩ + ∑
a

⟨ija | ̂V[3] |kla⟩na

Wijklmn = ⟨ijk | ̂V[3] | lmn⟩
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The VS-IMSRG

Choose the generator in order to decouple the valence-space from the excluded space:

η = ∑
ij

ηij{a†
i aj} + ∑

ijkl

ηijkl{a†
i a†

j alak}

ηij =
1
2

arctan( 2fij
fii − fjj + Γijij )

for  and  for  in the core,  in the valence-space, 
 outside the valence-space and  not in the core.

ij ∈ [pc, ov] ijkl ∈ [pp′ cc′ , pp′ vc, opvv′ ] c v
o p

ηijkl =
1
2

arctan( 2Γijkl

fii + fjj − fkk − fll + Γijij + Γklkl − Γikik − Γilil − Γjkjk − Γjljl )
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