Elucidating the Ge Nuclei with the Shell Model

Erin E. Peters University of Kentucky Interim Director UKAL

Primary Collaborators:

- B. A. Brown FRIB, Michigan State University, retired
- S. Mukhopadhyay former UK postdoc, now Georgia Institute of Technology
- S. W.Yates University of Kentucky, retired

UKAL 7 MV Model CN VDG (External View) – Located on U. of KY's main campus

Celebrating the 75 years of the shell model and Maria Goeppert Mayer

Why study the Ge isotopes?

Structurally Interesting!

§ **Soft/Rigid Triaxiality**

-
-

Broader Impacts: Neutrinoless Double-beta Decay

"…76Ge may be a rare example of a nucleus exhibiting rigid triaxial deformation in the low-lying states."

Triaxiality in 76Ge

PHYSICAL REVIEW C 87, 041304(R) (2013) ယ္စ Evidence for rigid triaxial deformation at low energy in ⁷⁶Ge

Y. Toh,^{1,2} C. J. Chiara,^{2,3} E. A. McCutchan,^{2,4} W. B. Walters,³ R. V. F. Janssens,² M. P. Carpenter,² S. Zhu,² R. Broda,⁵ B. Fornal,⁵ B. P. Kay,² F. G. Kondev,⁶ W. Królas,⁵ T. Lauritsen,² C. J. Lister,^{2,*} T. Pawłat,⁵ D. Seweryniak,² I. Stefanescu,^{2,3} N. J. Stone,^{7,8} J. Wrzesiński,⁵ K. Higashiyama,⁹ and N. Yoshinaga¹⁰ (2)

A. D. Ayangeakaa et al.,

Triaxiality in 76Ge

JUN45 Hamiltonian

jj44b Hamiltonian

Shell-Model Calculations by **Alex Brown**

Triaxiality in 76Ge

Ground-state deformations:

Shape Coexistence in Ge Isotopes

Are there bands built on the excited 0+ states?

76Ge 0νββ candidate

M. Agostini, et al. Rev. Mod. Phys. 95 025002 (2023).

M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, Rev. Mod. Phys. 95, 025002 (2023).

Experimental nuclear structure data are needed to constrain the calculations.

Calculated Nuclear Matrix Elements

Shell-Model Calculations by **Alex Brown**

 $\langle Q^2 \rangle$ [e²fm⁴]

Comparison with 76Se

Ground-state deformations:

Photon scattering

Neutron scattering

TUNL

UKAL

II. Deformations

Experimental Techniques

UKAL – Laboratory overview

- **7 MV Model CN VDG**
- \cdot **p**, **d**, ³He, and α beams
- **D.C. (~50** µ**A)**
- **Pulsed beams (~5** µ**A)**
- $f = 1.875$ MHz, Δt \sim 1 ns

Primarily perform neutron scattering

- ${}^{3}H(p,n){}^{3}He$, Q = -0.76 MeV, E_n < 5.5 MeV
- ${}^{2}H(d,n){}^{3}He$, Q = 3.3 MeV, E_n = 4 9 MeV

 \cdot Δ **E** < 100 keV

UKAL – Laboratory overview

- **Compton-suppressed HPGe**
- **Flux monitors: long counter, NE213**

• **New CAEN digital data acquisition system**

• **New** g**-ray timing capabilities**

4000 3000

2000

197 keV

INS DSAM Lifetimes

T. Belgya, G. Molnár, and S. W. Yates, Nucl. Phys. A607, 43 (1996).

INS Angular Distributions

INS Excitation Functions

UKAL – Inelastic Neutron Scattering

Transition probabilities for:

- \blacksquare Constraining 0v $\beta\beta$ nuclear matrix element calculations
- Identifying shape coexistence

Inelastic Neutron Scattering Advantages:

- **No Coulomb barrier**
- **Statistical population of all states up to** $\sim J^{\pi} = 6$
- **Population of non-yrast states**
- **Level lifetimes (fs-ps) measured using the**
	- **Doppler-shift attenuation method**
- **Multipole mixing ratios also measured from**
	- g**-ray angular distributions**
- **Eliminate erroneous states**
- § Eliminate the **erroneous states**.
	- § States are populated statistically and non-selectively in INS.
	- Thus, we see population of states with $J = 0 4$ within ~100 keV incident E_n of the level energy and states with $J = 5.6$ within ~400 keV.
	- **•** If we do not find at least the most intense γ ray(s) purportedly emitted from the state at the appropriate energies, we refute the level, labeling it an "erroneous state".
	- \blacksquare The γ ray is likely misplaced in the level scheme.
	- Coincidence data, while very helpful, are not generally required.
- § Identify **all** of the excited states up to some energy (*e.g.*, 3 MeV) in as many nuclei in the region as possible, but certainly those near the nucleus of interest.
- Characterize them as completely as possible.
- § Compare these data with theoretical model calculations.

A Comprehensive Approach

Shell Model (JUN45) **B.A. Brown**

B.A. Brown

Comparison of the number of states Both interactions levels ~200 keV > expt.

56Ni core model space jj44: 0f_{7/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}

B(E2) values greater than 1 W.u.

76Ge(n,n`g**) and Shell Model**

 (a) JUN45

B(E2) comparison with experiment shows good agreement. Reinforces band structure from a microscopic basis

(b) Experiment

S. Mukhopadhyay, B. P. Crider, B. A. Brown, et al., PRC 95, 014327 (2017).

 (c) jj44b

S. Mukhopadhyay, B. P. Crider, B. A. Brown, et al., PRC 95, 014327 (2017).

Experimental mixed-symmetry state is 2.767 MeV 2+ state

jj44b fragmented M1 strength, dominant component 2.69 MeV

JUN45 single 2.47 MeV level

Shell Model (JUN45) **B.A. Brown**

74Ge: First 10 States 2006 ENSDF Evaluation

Comments

.04 $ol. \theta$). 00099 15; B(E2)(W.u.)=43 6 ⁷⁴As ε decay. Other: +2.2 3 from $(n,n'\gamma)$. 71 11 $\overline{3}$ $+9-6$ 983Pa10). from 74 As ε decay. $\chi(E0/E2)$ < 0.052, $\rho^2(E0)$ > 0.032 (2005Ki02, evaluation). $(n,n'\gamma)$ (1970Ch15). Other: 2.0 +3–6 or 0.75 +15–6

m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme. $(n,n'\gamma)$ (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

 $(n,n'\gamma)$ (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

 ε . Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

From ENSDF

74Ge: First 10 States 2006 ENSDF Evaluation

Comments

.04 $ol. \theta$). 00099 15; B(E2)(W.u.)=43 6 ⁷⁴As ε decay. Other: +2.2 3 from $(n,n'\gamma)$. 71 11 $\overline{3}$ $+9-6$ 983Pa10). from 74 As ε decay. $X(E0/E2) < 0.052$, $\rho^2(E0) > 0.032$ (2005Ki02, evaluation). $(n,n'\gamma)$ (1970Ch15). Other: 2.0 +3–6 or 0.75 +15–6

m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme. $(n,n'\gamma)$ (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

 $(n,n'\gamma)$ (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

 ε . Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

From ENSDF

• 2403.5(4) keV γ ray **was previously assigned as a ground -state transition from a spin -1 state in 74Ge**

- **Peak should have ~10k cts at 2.5 MeV**
- **2999 keV γ ray is newly observed**

 $\mathbb{E}_{_{\gamma}}(\text{keV})$

 74 Ge

Shell Model (JUN45) **B.A. Brown**

Shell Model (JUN45) **B.A. Brown**

B.A. Brown

74Ge(n,n`g**) and Shell Model**

EEP, B.A. Brown, et al., Phys. Rev. C 109, 054318 (2024).

Shell Model (JUN45)

Calculations by Alex Brown with no input from our experiments Excellent agreement!

74Ge(n,n`g**) and Shell Model**

 22

The only 74Ge data used for the SVD fit were the groundstate binding energy and the excitation energies of the lowest two 2⁺ states.

Level densities also in great agreement

74Ge(n,n`g**) Shell Model**

EEP, B.A. Brown, et al., Phys. Rev. C 109, 054318 (2024).

74Ge Spin-1 States NRF @ HIg**S**

Polarized photon scattering allows the determination of parities of spin-1 states unambiguously

High-Intensity Gamma Source

-
-

February – March 2024 UNC: R.V.F. Janssens, A.D. Ayangeakaa Miss. St.: B.P. Crider, J.R. Vanhoy CEA Saclay: W. Korten UK: S.F. Hicks, E.E. Peters

72Ge: UKAL, HIyS, & SM Ongoing HIGHT HIGH

UKAL – INS experiments complete

UK undergraduates L.D. Martin B.H. Tomas Lopez

Initial JUN45 calculations complete

Ge(n,n`y)

Shell-model predictions

Shell-model predictions

- The nuclear structure is complex (and interesting!) for the Ge nuclei, but
- The shell-model JUN45 and jj44b interactions do an excellent job reproducing experimental data in this isotopic chain.
- This results lends confidence in using these interactions for calculating the $0\nu\beta\beta$ NME.

Thank you!!

• **Nuclear Structure Studies are funded by the National Science foundation through grants PHY –1913028 and PHY – 2209178**

Celebrating the 75 years of the shell model and Maria Goeppert Mayer

