Elucidating the Ge Nuclei with the Shell Model

Erin E. Peters University of Kentucky Interim Director UKAL

Celebrating the 75 years of the shell model and Maria Goeppert **Mayer**

Primary Collaborators:

- B. A. Brown FRIB, Michigan State University, retired
- S. Mukhopadhyay former UK postdoc, now Georgia Institute of Technology
- S. W. Yates University of Kentucky, retired

UKAL 7 MV Model CN VDG (External View) – Located on U. of KY's main campus

Why study the Ge isotopes?

Structurally Interesting!

- **Soft/Rigid Triaxiality**
- **Shape Transition**

Broader Impacts: Neutrinoless Double-beta Decay

Triaxiality in ⁷⁶Ge

PHYSICAL REVIEW C 87, 041304(R) (2013) G Evidence for rigid triaxial deformation at low energy in ⁷⁶Ge

Y. Toh,^{1,2} C. J. Chiara,^{2,3} E. A. McCutchan,^{2,4} W. B. Walters,³ R. V. F. Janssens,² M. P. Carpenter,² S. Zhu,² R. Broda,⁵ B. Fornal,⁵ B. P. Kay,² F. G. Kondev,⁶ W. Królas,⁵ T. Lauritsen,² C. J. Lister,^{2,*} T. Pawłat,⁵ D. Seweryniak,² I. Stefanescu,^{2,3} N. J. Stone,^{7,8} J. Wrzesiński,⁵ K. Higashiyama,⁹ and N. Yoshinaga¹⁰ (2)

"...⁷⁶Ge may be a rare example of a nucleus exhibiting rigid triaxial deformation in the low-lying states."

Triaxiality in ⁷⁶Ge

A. D. Ayangeakaa et al.,

Triaxiality in ⁷⁶Ge

Ground-state deformations:

A.D. Ayangeakaa, et al., Phys. Rev. C 107, 044314 (2023).

Shell-Model Calculations by Alex Brown

jj44b Hamiltonian

JUN45 Hamiltonian

Are there bands built on the excited 0⁺ states?

⁷⁶Ge $0\nu\beta\beta$ candidate

M. Agostini, et al. Rev. Mod. Phys. 95 025002 (2023).

Calculated Nuclear Matrix Elements

M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, Rev. Mod. Phys. 95, 025002 (2023).

Experimental nuclear structure data are needed to constrain the calculations.

Comparison with ⁷⁶Se

Ground-state deformations:

 $\langle Q^2 \rangle [e^2 fm^4]$

Shell-Model Calculations by Alex Brown

 $\langle Q^2 \rangle [e^2 fm^4]$

Experimental Techniques

HIGS Photon scattering

Neutron scattering TUNL

II. Deformations

UKAL

UKAL – Laboratory overview

Primarily perform neutron scattering

- ³H(p,n)³He, Q = -0.76 MeV, E_n < 5.5 MeV
- ²H(d,n)³He, Q = 3.3 MeV, E_n = 4 9 MeV

• $\Delta E < 100 \text{ keV}$

- 7 MV Model CN VDG
- p, d, ³He, and α beams

• *f* = 1.875 MHz, ∆*t* ~1 ns

UKAL – Laboratory overview

- Compton-suppressed HPGe
- Flux monitors: long counter, NE213

New CAEN digital data acquisition system

• New γ -ray timing capabilities

197 keV

CaF2_E230_90_TAC_v_HPGe_sub

INS DSAM Lifetimes

T. Belgya, G. Molnár, and S. W. Yates, Nucl. Phys. A607, 43 (1996).

INS Angular Distributions

INS Excitation Functions

UKAL – Inelastic Neutron Scattering

Transition probabilities for:

- Constraining $0\nu\beta\beta$ nuclear matrix element calculations
- Identifying shape coexistence

- No Coulomb barrier
- Statistical population of all states up to $^{T}J^{\pi} = 6$
- Population of non-yrast states
- Level lifetimes (fs-ps) measured using the
 - **Doppler-shift attenuation method**
- <u>Multipole mixing ratios</u> also measured from
 - γ -ray angular distributions
- Eliminate erroneous states

Inelastic Neutron Scattering Advantages:

A Comprehensive Approach

- Eliminate the <u>erroneous states</u>.
 - States are populated statistically and non-selectively in INS.
 - Thus, we see population of states with J = 0 4 within ~100 keV incident E_n of the level energy and states with J = 5,6 within ~400 keV.
 - If we do not find at least the most intense γ ray(s) purportedly emitted from the state at the appropriate energies, we refute the level, labeling it an "erroneous state".
 - The γ ray is likely misplaced in the level scheme.
 - Coincidence data, while very helpful, are not generally required.
- Identify <u>all</u> of the excited states up to some energy (*e.g.*, 3 MeV) in as many nuclei in the region as possible, but certainly those near the nucleus of interest.
- Characterize them as completely as possible.
- Compare these data with theoretical model calculations.

⁷⁶Ge(n,n`γ)

Shell Model (JUN45) B.A. Brown

⁷⁶Ge(n,n`γ)

B.A. Brown

⁷⁶Ge

B.A. Brown

⁷⁶Ge(n,n`γ)

⁷⁶Ge(n,n`γ)

B.A. Brown

⁵⁶Ni core model space jj44: $0f_{7/2}$, $1p_{3/2}$, $1p_{1/2}$, $0g_{9/2}$

Comparison of the number of states Both interactions levels ~200 keV > expt.

B(E2) values greater than 1 W.u.

⁷⁶Ge(n,n`γ) and Shell Model

(b) Experiment

B(E2) comparison with experiment shows good agreement. **Reinforces band structure from a microscopic basis**

S. Mukhopadhyay, B. P. Crider, B. A. Brown, et al., PRC 95, 014327 (2017).

(c) jj44b

Experimental mixed-symmetry state is 2.767 MeV 2⁺ state

jj44b fragmented M1 strength, dominant component 2.69 MeV

JUN45 single 2.47 MeV level

S. Mukhopadhyay, B. P. Crider, B. A. Brown, et al., PRC 95, 014327 (2017).

⁷⁴Ge(n,n`γ)

Shell Model (JUN45) B.A. Brown

⁷⁴Ge: First 10 States 2006 ENSDF Evaluation

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^{π}	Mult. [†]	δ	
595.850	2+	595.847 6	100	0.0	0^{+}	E2		B(E2)(W.u.)=33.
1204.205	2+	608.353 5	100 1	595.850	2+	E2+M1	+3.4 4	Mult.: from $\gamma(pc)$ B(M1)(W.u.)=0.0
1463.759 1482.81	$4^+_{0^+}$	1204.208 <i>12</i> 867.898 <i>6</i> 887.19 <i>7</i> 1482.6	46 <i>3</i> 100 100	0.0 595.850 595.850 0.0	0^+ 2^+ 2^+ 0^+	E2 E2 E2 E0		B(E2)(W.u.)=0.7 B(E2)(W.u.)=41 B(E2)(W.u.)=9 + From ce data (19)
1697.140	$(3)^{+}$	233 395 12	2.1.2	1463.759	4+			$I_{(\gamma+ce)}$: <0.006 f $q_{\rm K}^2$ (E0/E2)<0.12,
1077.140	(5)	492.936 6	58 1	1204.205	2+	(M1+E2)	+1.3 4	δ : from $\gamma(\theta)$ in (
		1101.267 <i>12</i>	100 1	595.850	2+	(M1+E2)	+0.34 5	Mult.: D+Q from δ : from $\gamma(\theta)$ in (Mult.: D+Q from
1724.954	(0^{+})	520.744 12	100	1204.205	2+			
2165.259	(3,4)+	468.11 <i>3</i> 701.487 <i>6</i>	6.5 <i>3</i> 42.7 <i>3</i>	1697.140 1463.759	$(3)^+$ 4 ⁺			
		961.055 <i>10</i>	100 1	1204.205	2+	(M1(+E2))	0.01 1	δ : from $\gamma(\theta)$ in (Mult.: D+Q from
2197.933	2+	715.17 <i>3</i> 734.17 <i>4</i>	35 2 25 4	1482.81 1463.759	$0^+ 4^+$			
		993.67 6	100 5	1204.205	2+	(E2+M1)	-2.8 2	δ : γγ(θ) in ⁷⁴ As Mult : D+O from
		1602.0 <i>2</i> 2197.95 <i>8</i>	45 <i>4</i> 82 <i>10</i>	595.850 0.0	$2^+_{0^+}$			indian D i Q non
2227.77	0^{+}	1021.9 <i>1</i> 1631.89 <i>12</i>	38 100	1204.205 595.850	2^+ 2^+			
2403.5	1	2403.5 4		0.0	0^{+}			
	E _i (level) 595.850 1204.205 1463.759 1482.81 1697.140 1724.954 2165.259 2197.933 2227.77 2403.5	E_i (level) J_i^{π} 595.850 2^+ 1204.205 2^+ 1463.759 4^+ 1482.81 0^+ 1697.140 $(3)^+$ 1724.954 (0^+) 2165.259 $(3,4)^+$ 2197.933 2^+ 2227.77 0^+ 2403.51	$E_i(level)$ J_i^{π} E_{γ} 595.850 2^+ $595.847.6$ 1204.205 2^+ $608.353.5$ 1463.759 4^+ $1204.208.12$ 1463.759 4^+ $867.898.6$ 1482.81 0^+ $887.19.7$ 1482.6 1697.140 $(3)^+$ $233.395.12$ 1697.140 $(3)^+$ $233.395.12$ 1204.208 12 $492.936.6$ 1101.267 12 1724.954 (0^+) $520.744.12$ 2165.259 $(3,4)^+$ $468.11.3$ 701.487.6 $961.055.10$ 2197.933 2^+ $715.17.3$ 734.17.4 $993.67.6$ 1602.0.2 $2197.95.8$ 2227.77 0^+ $1602.0.2$ 2197.95.8 $1021.9.1$ 1631.89.12 $2403.5.4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Comments

.0 4 ol, θ). 00099 15; B(E2)(W.u.)=43 6 7^{4} As ε decay. Other: +2.2 3 from (n,n' γ). 71 11 3 +9-6 983Pa10). from ⁷⁴As ε decay. 2, X(E0/E2)<0.052, ρ^{2} (E0)>0.032 (2005Ki02, evaluation). (n,n' γ) (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6

m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme. (n,n' γ) (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

(n,n'γ) (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

ε. Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

⁷⁴Ge

⁷⁴Ge: First 10 States 2006 ENSDF Evaluation

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	
595.850	2+	595.847 6	100	0.0	0^{+}	E2		B(E2)(W.u.)=33.
1204.205	2+	608.353 5	100 <i>I</i>	595.850	2+	E2+M1	+3.4 4	Mult.: from γ (po B(M1)(W.u.)=0.0
1463.759 1482.81	$4^+_{0^+}$	1204.208 <i>12</i> 867.898 <i>6</i> 887.19 <i>7</i> 1482.6	46 <i>3</i> 100 100	0.0 595.850 595.850 0.0	$0^+ 2^+ 2^+ 0^+$	E2 E2 E0		B(E2)(W.u.)=0.7 B(E2)(W.u.)=41 B(E2)(W.u.)=9 + From ce data (19)
1697.140	$(3)^{+}$	233.395 12	2.1.2	1463.759	4+			$I_{(\gamma+ce)}$: <0.006 fr q_{K}^{2} (E0/E2)<0.12,
10771110	(5)	492.936 6	58 1	1204.205	2+	(M1+E2)	+1.3 4	δ: from γ(θ) in (1) (1987Do14).
		1101.267 12	100 1	595.850	2+	(M1+E2)	+0.34 5	Mult.: D+Q from δ : from $\gamma(\theta)$ in (1) Mult.: D+Q from
1724.954	(0^+)	520.744 12	100	1204.205	2^{+}			-
2165.259	$(3,4)^+$	468.11 <i>3</i>	6.5 <i>3</i>	1697.140	$(3)^+$			
		701.487 6	42.7 3	1463.759	4+			
		961.055 10	100 1	1204.205	2+	(M1(+E2))	0.01 1	δ : from $\gamma(\theta)$ in (Mult.: D+Q from
2197.933	2+	715.17 <i>3</i>	35 2	1482.81	0^{+}			
		734.17 4	25 4	1463.759	4+			
		993.67 6	100 5	1204.205	2+	(E2+M1)	-2.8 2	δ : γγ(θ) in ⁷⁴ As Mult.: D+O from
		1602.0 2	45 <i>4</i>	595.850	2+			
		2197.95 8	82 10	0.0	0^{+}			
2227.77	0^{+}	1021.9 <i>1</i>	38	1204.205	2+			
		1631.89 12	100	595.850	2+			
2403.5	1	2403.5 4		0.0	0^{+}			

Comments

.0 4 ol, θ). 00099 15; B(E2)(W.u.)=43 6 7^{4} As ε decay. Other: +2.2 3 from (n,n' γ). 71 11 3 +9-6 983Pa10). from ⁷⁴As ε decay. 2, X(E0/E2)<0.052, ρ^{2} (E0)>0.032 (2005Ki02, evaluation). (n,n' γ) (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6

m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme. (n,n' γ) (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

(n,n'γ) (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

ε. Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

• 2403.5(4) keV γ ray was previously assigned as a ground-state transition from a spin-1 state in ⁷⁴Ge

- Peak should have ~10k cts at 2.5 MeV
- 2999 keV γ ray is newly observed

⁷⁴Ge

Shell Model (JUN45) B.A. Brown

⁷⁴Ge(n,n`γ)

ı
I
I
I
I
I
I
-
I

Shell Model (JUN45) B.A. Brown

⁷⁴Ge(n,n`γ) and Shell Model

B.A. Brown

⁷⁴Ge(n,n`γ) and Shell Model

22

Calculations by Alex Brown with no input from our experiments Excellent agreement!

The only ⁷⁴Ge data used for the SVD fit were the groundstate binding energy and the excitation energies of the lowest two 2⁺ states.

EEP, B.A. Brown, et al., Phys. Rev. C 109, 054318 (2024).

Shell Model (JUN45)

⁷⁴Ge(n,n`γ) Shell Model

EEP, B.A. Brown, et al., Phys. Rev. C 109, 054318 (2024).

Level densities also in great agreement

⁷⁴Ge Spin-1 States NRF @ HIγS

High-Intensity Gamma Source

Polarized photon scattering allows the determination of parities of spin-1 states unambiguously

⁷²Ge: UKAL, HIγS, & SM Ongoing

UKAL – INS experiments complete

UK undergraduates L.D. Martin B.H. Tomas Lopez

Initial JUN45 calculations complete

ΗΙγS

February – March 2024 UNC: R.V.F. Janssens, A.D. Ayangeakaa Miss. St.: B.P. Crider, J.R. Vanhoy CEA Saclay: W. Korten UK: S.F. Hicks, E.E. Peters

Shape coexisting bands

Shape coexisting bands

Shape coexisting bands

Shell-model predictions

Shape coexisting bands

⁷⁶Ge(n,n`γ)

Shape coexisting bands

Shape coexisting bands

Shell-model predictions

Shape coexisting bands

Shell-model predictions

- The nuclear structure is complex (and interesting!) for the Ge nuclei, but
- The shell-model JUN45 and jj44b interactions do an excellent job reproducing experimental data in this isotopic chain.
- This results lends confidence in using these interactions for calculating the $0\nu\beta\beta$ NME.

Thank you!!

 Nuclear Structure Studies are funded by the National Science foundation through grants PHY –1913028 and PHY – 2209178

Celebrating the 75 years of the shell model and Maria Goeppert Mayer