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Quantum Bits

Can use any two-state system, e.g. the spin of an electron:

|↑⟩ → |0⟩

|↓⟩ → | 1 ⟩

An N-qubit “register” has 2N “computational-basis” states, e.g.

|1⟩ |1⟩ |0⟩ |1⟩ |0⟩ |0⟩ |0⟩ . . .



Circuit Model

Computer acts on qubits or sets of
qubits (“wires”) with sequence of
unitary transformations (“gates”),
e.g.:

|0⟩

| 1 ⟩

| 1 ⟩

U0

U1

U2

U3

Some common gates:

σx Not

σx |0⟩ = | 1 ⟩
σx | 1 ⟩ = |0⟩

H Hadamard

H |0⟩ = 1
√

2
(|0⟩ + | 1 ⟩)

|x⟩

|y⟩

|x⟩

|x ⊕ y⟩
Controlled not

Flips bottom bit if top bit is 1



Mapping States

Any simulation requires a mapping of qubits onto physical states.
Qubits are two-state systems, just like spins, so the mapping to
spins is straightforward.

Fermions orbitals — full or empty — are similar, but a little more
complicated because of the Pauli exclusion principle.

Basic idea: |0⟩ represents an empty orbital, |1⟩ an occupied one.

a†i ≈ σ (i)
−

To incorporate antisymmetry, need something more complicated,
e.g., Jordan-Wigner mapping:

a†i = σ
(1)
z σ

(2)
z . . . σ

(i−1)
z σ (i)

−



Hybrid Algorithms

One idea for reducing depth of circuits — the “Variational Quantum
Eigensolver” (VQE) — is to offload some of the computation onto a
classical computer.

Variational Method

Construct ground-state ansatz

|Ψ⟩ = U(θ1, θ2, . . . , θN) |Ψ0⟩ ,

that depends on parameters θi.
|Ψ0⟩ is some simple “reference”
state.

Vary parameters to minimize
⟨Ψ|H|Ψ⟩.

Hybrid Implementation

Quantum circuit
for U(θ1, . . . , θN)
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Classical update of θi



Ansätze for Many-Body Problem

Fermi
surface

...

i,j

a,b

Hartree-Fock state |Φ⟩

Fall into two categories:
What the hardware is best at doing
Good guesses according to many-body physics

Typical of the latter is “unitary coupled clusters.”

|Ψ⟩ = eT−T† |Φ⟩
T =

∑
ia
tai a

†
aai +

∑
iajb

tabij a
†
aa†bajai + . . . .

(Series for T but has to be truncated
somewhere.)

Unfortunately, the first kind is limited by hardware, and the second,
often, to systems that aren’t too strongly correlated.



ADAPT-VQE
Grimsley, Economou, Barns, and MayHall, Nature Comm. 10:3007 (2019)

Want a procedure capable of producing the exact ground state.

Ansatz:

Iteration 1: |Ψ⟩ = e−iθ1A1 |Ψ0⟩
Iteration 2: |Ψ⟩ = e−iθ2A2e−iθ1A1 |Ψ0⟩
...

...

A1, A2 . . . are all operators of the
form a†αaβ and a†αa†βaγaδ .

|Ψ0⟩ is a “reference state,” e.g. the
Hartree-Fock state |Φ⟩.

At each iteration select operator
Ai that produces largest ∂ ⟨H⟩

∂θi
to

add to set.

Quantum circuit for
eiθ2A2eiθ1A1 . . . |Ψ0⟩
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⟨H
⟩

∂
θ i

Selection of next operator,
reoptimization of previous
θ’s along with new one

Energy measurements



Likpin model
Want to understand, how efficiency of ADAPT-VQE scales with N.
Investigate with simple solvable model of nuclear interactions.

Fermi
surface

Equivalent to a set of spins with Hamiltonian:

H = ε Jz −
1
2V

(
J2+ + J2−

)
=

ε

2

N∑
i=1

σi,z −
1
8V

N∑
i,j=1

(
σi,+σj,+ + σi,−σj,−

)
All spins interact with the same strength.
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Spontaneous Symmetry Breaking in Nuclear Structure
Example: Parity in octupole-deformed systems

Calculated 225Ra density

Parity is broken spontaneously in mean-field theory, which gives
good description of “intrinsic state,” but contains only a single
orientation for that shape.

To work with this wave function you have to first “restore” reflection
symmetry.



Symmetry Restoration
When intrinsic state | ⟩ is
asymmetric, it breaks parity.

To get states with good parity, we
superpose the intrinsic state and its
reflection:

|±⟩ = 1
√

2
(
| ⟩ ± | ⟩

)
Symmetric state |+⟩ gains binding
energy when symmetry is restored.

Parity Doublet in 225Ra
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Fig. 5. Proposed grcxxping of the low-lying states OF 2zSRa into rotation& bands. T’ke two members of 
tke f? = $- band have been reported in a study of the ‘%?r decay 2oj; they are not observed in the 

present study. 

of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

|+⟩

|−⟩

In a variational calculation you can restore symmetry — also called
“projecting” onto states with good quantum numbers — after
energy minimization (PAV) or before the variation, in the ansatz
itself (VAP).

The second method harder but gives better results.



Symmetry Breaking in Lipkin Model

H excites particles in pairs, so

“Number Parity” = (−1)# excited particles

= (−1)# up spins in spin interpretation

is conserved.

But for large enough V, Hartree-Fock state breaks the symmetry:
each single-particle state contains both spin-up and spin-down.

Transition occurs when V = ε/(N − 1).

How does the transition affect ADAPT-VQE’s efficiency?
Does it help to restore the symmetry explicitly?



Results on Symmetry Breaking
y =

(
1 + ε

(N − 1)V

)−1
, N = 10

0.2 0.4 0.6 0.8 1.0

y

25

50

75

100

125

150

175

200
It

er
at

io
n

s
0

HF

HF-PAV

HF-VAP

Symmetry-breaking reference state and symmetry restoration help.

No interaction

Symmetry
unbroken

Symmetry
broken

} Symmetry-restoring
methods

All spins up in reference
Hartree-Fock reference



Results on Scaling
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Projected Hartree-Fock reference state
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Scaling in the Shell Model

USBD and KB3G interactions
With Jordan-Wigner mapping
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Not as orderly, but still quite mild.

Haven’t yet tried breaking symmetries.



Finally . . .

Projection helps.
Scaling is mild.

After this work, Antonio, Javier, and collaborators investigated
shell-model calculations in more detail, designed explicit circuits to
implement ADAPT-VQE.

Results are promising, but to get a fixed, nucleus-independent
accuracy, need the number of CNOT gates to be roughly
proportional to basis size. So no quantum advantage yet.

Still a lot of possible improvements, though.

Thanks for listening!
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