NEURAL NETWORK QUANTUM STATES FOR THE NUCLEAR MANY-BODY PROBLEM

ALESSANDRO LOVATO

Celebrating 75 Years of the Nuclear Shell Model and Maria Goeppert-Mayer

July 21, 2024

COLLABORATORS

C. Adams, **P. Fasano, B. Fore, J.Fox, A. Tropiano**, R. B. Wiringa

M. Hjorth-Jensen

G. Carleo, **J. Nys, G. Pescia**

J. Kim

M. Rigo

Fermilab N. Rocco

A. Di Donna, F. Pederiva

CURSE OF DIMENSIONALITY

Image courtesy of Patrick Fasano

NEURAL-NETWORK QUANTUM STATES

Quantum states of physical interest have distinctive features and intrinsic structures

NEURAL-NETWORK QUANTUM STATES

$$E_V \equiv \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} > E_0$$

$$E_V \simeq \frac{1}{N} \sum_{X \in |\Psi_V(X)|^2} \frac{\langle X | H | \Psi_V \rangle}{\langle X | \Psi_V \rangle}$$

ANTI-SYMMETRIC ANSATZ

$$\Psi_V(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_A) = -\Psi_V(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_A)$$

ANTI-SYMMETRIC ANSATZ

Slater-Jastrow

$$\Phi_{SJ}(X) = e^{J(X)} \times \det \begin{bmatrix} \phi_1(x_1) & \phi_1(x_2) & \cdots & \phi_1(x_N) \\ \phi_2(x_1) & \phi_2(x_2) & \cdots & \phi_2(x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N(x_1) & \phi_N(x_2) & \cdots & \phi_N(x_N) \end{bmatrix}$$

J. Stokes et al., PLB, **102**, 205122 (2020)

Pfau et al., PRR 2, 033429 (2020)

Hermann et al., Nature Chemistry, **12**, 891 (2020)

ANTI-SYMMETRIC ANSATZ

Pfaffian-Jastrow

$$\Phi_{PJ}(X) = e^{J(X)} \times pf \begin{bmatrix} 0 & \phi(x_1, x_2) & \cdots & \phi(x_1, x_N) \\ \phi(x_2, x_1) & 0 & \cdots & \phi(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_N, x_1) & \phi(x_N, x_2) & \cdots & 0 \end{bmatrix}$$

$$pf \begin{bmatrix} 0 & \phi_{12} & \phi_{13} & \phi_{14} \\ -\phi_{12} & 0 & \phi_{23} & \phi_{24} \\ -\phi_{13} & -\phi_{23} & 0 & \phi_{34} \\ -\phi_{14} & -\phi_{24} & -\phi_{34} & 0 \end{bmatrix} = \phi_{12}\phi_{34} - \phi_{13}\phi_{24} + \phi_{14}\phi_{23}$$

J. Kim, B. Fore, AL, et al. Commun. Phys. 7 (2024) 1, 148

NEURAL BACKFLOW CORRELATIONS

The nodal structure is improved with neural back-flow transformations $\mathbf{x}_i \longrightarrow \mathbf{y}_i(\mathbf{x}_i; \mathbf{x}_{j \neq i})$

G. Pescia, et al., Phys. Rev. B 110 (2024) 3, 035108

Periodic-NQS to solve the two-components Fermi gas in the BCS- BEC crossover region

Interactions of mediated by a Pöschl-Teller potential

$$\left(\frac{E}{E_{FG}}\right)_{\rm exp} = \xi = 0.376(5)$$

J. Kim, B. Fore, AL, et al. Commun.Phys. 7 (2024) 1, 148

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 NN potential fit to s-wave np scattering lengths and effective ranges

$$v_{ij}^{\text{CI}} = \sum_{p=1}^{4} v^p(r_{ij}) O_{ij}^p,$$
$$O_{ij}^{p=1,4} = (1, \tau_{ij}, \sigma_{ij}, \sigma_{ij}\tau_{ij})$$

R. Schiavilla, AL, PRC 103, 054003 (2021)

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

• 3NF adjusted to reproduce the energy of ³H.

$$V_{ijk} \propto c_E \sum_{\text{cyc}} e^{-(r_{ij}^2 + r_{jk}^2)/R_3^2}$$

R. Schiavilla, AL, PRC 103, 054003 (2021)

DEUTERON AGAIN

C. Adams, AL, et al, PRL **127**, 022502 (2021)

SELF-EMERGING SHELLS

REACHING NEON

AND BEYOND

The ground-state is generate in $L_{z} % \left({{L_{z}}} \right) = {L_{z}} \left({{L_{z}}} \right) = {L_{z}} \left({{L_{z}}} \right)$

$$|\Psi_{HN};L,S\rangle = \sum_{L_z S_z} c_{L_z S_z}^{L,S} |L,L_z;S,S_z\rangle.$$

The ground-state is generate in L_z

$$|\Psi_{HN};L,S\rangle = \sum_{L_z S_z} c_{L_z S_z}^{L,S} |L,L_z;S,S_z\rangle.$$

Remove this degeneracy by

 $H \to H - B_z L_z$

The ground-state is generate in L_z

$$|\Psi_{HN};L,S\rangle = \sum_{L_z S_z} c_{L_z S_z}^{L,S} |L,L_z;S,S_z\rangle.$$

Remove this degeneracy by

 $H \to H - B_z L_z$

 \vec{B}

The ground-state is generate in Lz

Remove this degeneracy by

The ground-state is generate in Lz

Remove this degeneracy by

A. Gnech, AL, et al., 2308.16266

A. Gnech, AL, et al., 2308.16266

NEUTRON STARS

DILUTE NEUTRON MATTER

B. Fore, AL, et al. in preparation

14 Neutrons, 14 Protons @ ρ =0.01 fm⁻³

B. Fore, AL, et al. in preparation

14 Neutrons, 14 Protons @ ρ =0.01 fm⁻³

24 Neutrons, 4 Protons @ ρ =0.01 fm⁻³

24 Neutrons, 4 Protons @ ρ =0.01 fm⁻³

HYPERNUCLEI

6 protons, 6 neutrons

6 protons, 5 neutrons, 1 lambda

$$\Psi(x_{\Lambda}, x_1, \dots, x_A) = \mathcal{U}(x_{\Lambda}; x_1, \dots, x_A) \times \Psi_{HN}(x_1, \dots, x_A)$$

HYPERNUCLEI

A. Di Donna, in preparation

CONCLUSIONS

NQS successfully applied to study:

- ➡ Ultra-cold Fermi gases, outperforming state-of-the-art continuum DMC;
- ➡ Dilute nucleonic matter, including the self-emergence of nuclei;
- Essential Elements of nuclear binding

Ongoing efforts:

- Medium-mass nuclei
- Excited states
- Chiral-EFT potentials
- Real-time dynamics

THANK YOU

NEURAL-NETWORK QUANTUM STATES

WAVE FUNCTION OPTIMIZATION

ANN trained by performing an imaginary-time evolution in the variational manifold

$$\begin{split} |\bar{\Psi}_{V}(\mathbf{p}_{\tau}) &\equiv (1 - H\delta\tau) |\Psi_{V}(\mathbf{p}_{\tau})\rangle \\ \mathbf{p}_{\tau+\delta\tau} &= \operatorname*{arg\,max}_{\mathbf{p}\in R^{d}} \left(\left| \langle \bar{\Psi}_{V}(\mathbf{p}_{\tau}) | \Psi_{V}(\mathbf{p}_{\tau+\delta\tau}) \rangle \right|^{2} \right) \end{split}$$

The parameters are updated as

$$\mathbf{p}_{\tau+\delta\tau} = \mathbf{p}_{\tau} - \delta\tau S^{-1}\mathbf{g}_{\tau}$$

J. Stokes, at al., Quantum 4, 269 (2020).

S. Sorella, Phys. Rev. B 64, 024512 (2001)

CONDENSED-MATTER DETOUR

HOMOGENOUS ELECTRON GAS

We develop translation invariant NQS to study the Homogeneous Electron Gas.

$$H = -\frac{1}{2r_s^2} \sum_{i}^{N} \nabla_{\vec{r}_i}^2 + \frac{1}{r_s} \sum_{i < j}^{N} \frac{1}{||\vec{r}_i - \vec{r}_j||} + \text{const.}$$

HOMOGENOUS ELECTRON GAS

Energies

Correlation functions

G. Pescia, et al., Phys. Rev. B 110 (2024) 3, 035108

Periodic-NQS to solve the two-components Fermi gas in the BCS- BEC crossover region

We model the 3D unpolarized gas of fermions with the Hamiltonian

$$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij}$$

 Modified Pöschl-Teller potential between opposite-spin particles

$$v_{ij} = (\delta_{s_i, s_j} - 1) v_0 \frac{2\hbar^2}{m} \frac{\mu^2}{\cosh^2(\mu r_{ij})}$$

