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Introduction

Statistical properties are important input in the Hauser-Feshbach theory of 
compound nuclear reactions but are not always accessible to direct measurement.

-  Mean-field approximations (e.g., Hartree-Fock-Bogoliubov) often miss
     important correlations and are problematic in the broken symmetry phase.

The calculation of statistical properties in the presence of correlations is a
challenging many-body problem.

Statistical properties of nuclei: level densities, g-ray strength functions,... 

The configuration-interaction (CI) shell model takes into account correlations beyond 
the mean-field but the combinatorial increase of the dimensionality of its model 
space has hindered its applications in heavy nuclei.



The shell-model Monte Carlo (SMMC) enables microscopic calculations 
in spaces that are many orders of magnitude larger (~ 1032) than those 
that can be treated by conventional methods (~ 1011) .

SMMC is the state-of-the-art method for the microscopic calculation 
of statistical properties of nuclei.

C. W. Johnson, S. E. Koonin, G. H. Lang, and W. E. Ormand, PRL 69, 3157 (1992)
G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC  48, 1518 (1993)
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994)

Recent review of SMMC: Y. Alhassid, in Emergent Phenomena in Atomic Nuclei 
from Large-Scale Modeling, ed.  K.D. Launey (World Scientific 2017)



The shell-model Monte Carlo (SMMC) method

  
e−βH = D σ⎡⎣ ⎤⎦∫  GσUσ

Gibbs ensemble           at temperature T                   can be written as a 
superposition of ensembles       of non-interacting nucleons moving in 
time-dependent fields

 e−βH

Us( )s t

•   The integrand reduces to matrix algebra in the single-particle space (of  typical  
dimension 50 – 100)

s

(β = 1/T )

• Calculations are done in the canonical ensemble of fixed numbers of protons 
and neutrons (using exact particle-number projection)

•  The high-dimensional       integration is evaluated by Monte Carlo methods.
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SMMC in Heavy Nuclei

• CI Hamiltonian with Woods-Saxon plus spin orbit coupling, 

• Pairing-plus-multipole interaction (quadrupole, octupole, hexadecupole) 
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Model space for lanthanides:
• Protons: 50-82 shell plus 1𝑓!/#
• Neutrons: 82-126 shell plus 0ℎ$$/#, 1𝑔%/#

Interaction coefficients in C. Ozen, Y. 
Alhassid, H. Nakada PRL 110, 042502 
(2013)

Model space for actinides:
• Protons: 82-126 shell plus 1𝑔%/#
• Neutrons: 126-184 shell plus 1ℎ$$/#

Interaction coefficients in D.D., Y. Alhassid,  
(forthcoming)

Different model space and interaction coefficients for different regions of the nuclear chart



• The average state density is found from             in the saddle-point   
approximation:

  
ρ E( ) ≈ 1

2πT 2C
eS E( )

( ) lnS E Z Eb= + 2 /C Eb b= - ¶ ¶

ln / ( )Z Eb b-¶ ¶ = ( )Z b
Calculate the thermal energy                   versus      and integrate
                                        to find the partition function          .

( )Z b

  E(β ) =< H > b

Nuclear State Densities in the SMMC 

S(E) = canonical entropy            C = canonical heat capacity

⇢(E) = 1
2⇡i

R i1
�i1 d� e�EZ(�)

The state density          is related to the partition function by an inverse
 Laplace transform:

⇢(E)

Partition function

State density



Guttormsen, Alhassid, Ryssens et al., PLB 816, 136206 (2021) 

State densities in Lanthanides 

←Spherical Deformed→

• Enhancement above the mean field values is due to rotation in deformed nuclei and rapidly decreases 
above the shape transition



Level Densities in Actinides

Experimental Results:  
232Th, 238U: M. Guttormsen et al, PRC 88 024307 (2013)
240Pu: F. Zeiser et al, PRC 100 024305 (2019)

• Actinides: Larger single-particle model space, requires larger 𝛽	to calculate ground-state 
energy

• SMMC shows excellent agreement with Oslo experiments



Shape Dependence of State Densities
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Deformed Transitional Spherical

Ex (MeV)

•  In strongly deformed nuclei, the contributions from prolate shapes dominate the state density below 
the shape transition energy.

•  In spherical nuclei, both spherical and prolate shapes make significant contributions.

Mustonen, Gilbreth, Alhassid, and Bertsch, PRC 98, 034317 (2018)

Shape dependence is determined by projecting on the mass quadrupole 



g-ray Strength Functions (γSF)

In recent years, a low-energy enhancement (LEE) was observed
in the gSF of mid-mass nuclei and in a few rare-earth nuclei

strips (!! ¼ 2"), covering scattering angles between 40"

and 54". In total, SiRi has a solid-angle coverage of# 6%.
Using the !E$ E technique, each charged-particle spe-
cies was identified and a gate was set on the outgoing
protons. From the reaction kinematics, the proton energy
was converted into excitation energy in the residual
nucleus.

In this experiment, the CACTUS array contained 22
collimated 500 % 500 NaI:Tl detectors, and six collimated
3:500 % 800 LaBr3:Ce detectors [16,17] from the Milano
HECTORþ array. At the front of the crystals, the conically
shaped lead collimators have a radius of 3.5 cm, and the
distance to the target is 22 cm, yielding an internal semi-
angle of 9". The NaI detectors were placed in the CACTUS
frame with six different angles ! with respect to the beam
axis: 37.4", 63.4", 79.3", 100.7", 116.6", and 142.6", while
the LaBr3 crystals covered four angles: 63.4", 79.3",
100.7", and 116.6".

The " spectra were unfolded using the technique
described in Ref. [18], but with new response functions
from " lines of excited states in 13C, 16;17O, 28Si, and
56;57Fe populated with various inelastic-scattering and
transfer reactions. Furthermore, the distribution of the
primary " rays for each excitation-energy bin (124 keV
wide) was determined from an iterative subtraction tech-
nique [19].

From the matrix of primary " spectra, we have extracted
simultaneously the level density and "-transmission coef-
ficient for 56Fe using the least #2 method given in
Ref. [20]. The absolute value and slope of the level density
were determined from discrete levels [21] below an exci-
tation energy of E ¼ 4 MeV and from the comparison to
particle-evaporation data [22,23]. To get the absolute value
of the "-transmission coefficient, we used estimated values
from systematics (as there are no experimental values) for
the neutron-resonance level spacingD0 ¼ 2500ð1250Þ eV,
the total, average " width h""i ¼ 1500ð750Þ meV, and
spin cutoff parameters from Ref. [24]. Assuming that
dipole radiation dominates the " decay in the quasicontin-
uum region, the "SF is deduced from the "-transmission
coefficient by

fðE"Þ ¼ T ðE"Þ=2$E3
"; (1)

where fðE"Þ is the "SF for " energy E", and T ðE"Þ is the
"-transmission coefficient. The resulting "SFs obtained
from the LaBr3 and NaI " spectra are shown in Fig. 1.

We observe that our new data are in overall very good
agreement with the (3He, %") data of Ref. [7]. The upbend
is confirmed, using new, higher-resolution detectors and
response functions. Also, the different reaction type
is expected to populate lower initial spins than the
(3He, %") reaction, which has a high cross section for
high-‘ pickup [25]. Compared to the (3He, %") experi-
ment, the particle-detector resolution has been improved
from 400 to 90 keV (full width at half maximum), and the

"-energy resolution has been improved by more than a
factor of 2 for all " energies using the LaBr3 crystals. Thus,
the upbend is clearly independent from systematic errors in
the detector response and reaction-induced effects. The
difference in strength at high " energies might be due to
small variations in the normalization of the level density
and the new and more precise response functions. Also, we
see a good match with photoneutron data on 59Co [26],
supporting the chosen values for D0 and h""i.
Making use of the various angles for which the NaI

detectors were placed, angular distributions were extracted
by sorting the data into (E, E") matrices according to the
angle ! of the NaI detectors relative to the beam direction.
From the intensities as a function of angle, we have fitted
angular-distribution functions of the form [27]

Wð!Þ ¼ A0 þ A2P2ðcos!Þ þ A4P4ðcos!Þ; (2)

where Pkðcos!Þ is a Legendre polynomial of degree k. The
LaBr3 detectors were placed at only four angles and were
not used for this analysis, although we note that the shapes
of the angular distributions for the LaBr3 and NaI detectors
are in very good agreement for the four overlapping angles.
The normalized angular-distribution coefficients are

given by ak ¼ Qk%kAk=A0, where Qk # 1 is the geomet-
rical attenuation coefficient due to the finite size of the "
detectors, and %k is the attenuation due to partial alignment
of the nuclei relative to the beam direction. Errors in the
intensities are given by &tot ¼ &stat þ &syst, where the sta-

tistical errors are estimated with
ffiffiffiffi
N

p
whereN is the number

of counts, and the systematic errors are deduced from the
relative change in N for each symmetric pair of angles
(37.4",142.6"), (63.4",116.6"), and (79.3",100.7"). Note
that for this high-statistics experiment, the statistical error
bars are in general small. However, the systematic uncer-
tainties due to partly asymmetric " intensities for the pairs
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FIG. 1 (color online). Gamma-strength functions of 56Fe from
the present experiment and from the (3He, %") data [7] com-
pared with 59Coð"; nÞ data from Ref. [26].
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FIG. 9. Experimental γ SFs (solid squares) with their error bands (shaded blue) due to the uncertainty in σ , D0, ⟨#γ 0⟩, and η parameters.
The photoneutron data of Carlos [31] and Nyhus [32] (purple circles and open diamonds) are shown for the high-energy regions. Also the
resonance capture data [3] are shown as a filled red square data point in 144,146Nd. The various models applied are shown as curves; see
assignments in panel (f). The large systematic errors for 150,151Nd are mainly due to the uncertainties in the ⟨#γ ⟩ values.

tail from the GDR is established, and we may introduce the
weaker and lower-lying structures on top of this. In cases
where no experimental data exist for certain γ -energy regions,
we use the neighboring isotopes as a guidance. We apply the
fit method implemented in ROOT, which is based on the MINUIT
package [30] with Hessian matrix error analysis.

We should point out that the Oslo method cannot sepa-
rate the data into E1 or M1 contributions. Furthermore, the
technique is restricted to an excitation energy of maximum
Sn, which is typically around 5–6 and 7–8 MeV for the odd-
and even-mass isotopes, respectively. Nevertheless, by also
exploiting other experimental data, we will obtain a reliable
description of the γ SF. Figure 9 presents our data together
with other external data for 142,144–151Nd. The various models
are shown as curves with corresponding model parameters
listed in Tables III and IV.

TABLE III. Parameters for the GDR resonances with Tf =
0.50 MeV. Parameters with uncertainties are from the fit.

Nucleus GDR1 GDR2

EGDR1 σGDR1 #GDR1 EGDR2 σGDR2 #GDR2

(MeV) (mb) (MeV) (MeV) (mb) (MeV)

142Nd 13.5(3) 89(18) 3.3(8) 15.3(4) 325(22) 3.8(1)
144Nd 14.4(7) 179(93) 4.4(11) 15.9(2) 184(103) 4.3(7)
145Nd 14.0(4) 166(48) 3.7(9) 16.1(2) 209(48) 4.8(9)
146Nd 13.1(7) 89(19) 3.9(19) 15.7(5) 435(30) 4.6(2)
147Nd 13.5 130 5.2 15.8 292 4.6
148Nd 13.8(9) 172(32) 6.4(28) 15.9(8) 147(58) 4.6(11)
149Nd 13.6 193 6.0 16.2 146 4.3
150Nd 13.4(2) 213(5) 6.7(5) 16.5(8) 145(9) 4.0(4)
151Nd 13.4 213 6.7 16.5 145 4.0

034314-9

M. Guttormsen et al., PRC 106, 034314 (2022) A.C. Larsen et al., PRL 111, 242504 (2013)

If the LEE persists in heavy neutron-rich nuclei, it can have significant  effects on r-
process nucleosynthesis by enhancing radiative neutron capture rates near the 
neutron drip line.



• QRPA strength functions can often miss important correlations and 
require empirical modifications. QRPA does not produce the LEE

The calculation of strength functions in the presence of correlations is a
challenging many-body problem and microscopic approaches are limited:

• Conventional CI shell model studies have attributed the LEE to the M1 
gSF but they are limited to light and medium-mass nuclei.

Theoretical Calculations of 𝛾-ray Strength Functions

SMMC enables exact (up to statistical errors) calculations in heavy nuclei!



In SMMC, it is only possible to calculate imaginary-time response functions

		RO(τ )= 〈O(τ )O(0)〉

The response function          is the Laplace transform of the strength function  

		
RO(τ )= dω e−τω SO(ω )

−∞

∞

∫

		RO(τ )

The inversion requires analytic continuation to real time and is numerically
 ill-defined (no unique solution) 

We use the maximum entropy method (MEM): fitting to the SMMC response function 
while staying “sufficiently close” to a prior strength function 

The success of the method depends on a good choice for a prior strength function
        we use the static path approximation (includes large-amplitude static fluctuations of  
        the mean field)

The finite-temperature strength function of a transition operator &𝑂  (e.g., E1,M1,...) is

		
SO(ω )=

e−βEi

Zi , f
∑ |〈 f |O|i〉|2 δ(ω −(E f −Ei ))



M1 Strength Functions

Several collective structures can be identified 
in the M1 strength functions

• LEE – Large peak near 𝜔 = 0, seen at finite 
temperature, but not in the ground state
- Experimentally, seen in Oslo method in 
the deexcitation strength, but not in photo-
excitation strength

• Scissor mode – Broad peak near 𝜔 = 2 
MeV in deformed nuclei

• Spin-flip mode – Sharp peak near 𝜔 = 5 −
6 MeV seen in all nuclei

D.D., Y. Alhassid (forthcoming)
DeformedSpherical



M1 De-excitation Strength Functions

Even mass: Mercenne, Fanto, Ryssens, Alhassid, arXiv:2407.06161

𝑓&$ 𝐸' = 𝑎
+𝜌 𝐸(

+𝜌 𝐸( − 𝐸'
𝑆&$(−𝐸')

LEE is seen in all nuclei, 
magnitude and slope only 
weakly vary with N – good 
agreement with experiment

Scissors mode built on excited 
states emerges as deformation 
increases

Experimental strength function 
contains both M1 and E1



Conclusions:
• SMMC enables microscopic computations in very large model spaces such as

those required for the lanthanides and actinides

• Nuclear level densities from SMMC show excellent agreement with experimental data

• γSFs can be computed in the SMMC using the MEM with the SPA strength

as a prior

• The LEE is observed theoretically (and experimentally) in heavy nuclei

Prospects:

• Further computations of NLDs in actinides, including odd-A nuclei

• First calculations of the γSFs in actinides; Does the LEE persist?

• Shape dependent state densities in actinides - relevant for fission
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