Accessing x-dependent GPDs from lattice QCD

Martha Constantinou

DNP Fall Meeting 2023 APS & JPS

Invited Workshop:

3D Hadron Structure from Next-Generation Scattering Experiment & Lattice QCD

November 27, 2023

Outline

- ★ Approaches to access information on GPDs from lattice QCD
- ★ Definition of light-cone GPDs vs Euclidean lattice definition (quasi GPDs)
- ★ New Lorentz covariant approach to access x-dependence of GPDs
- **★** Results on H, E, \widetilde{H} GPDs
- **★** Future extensions Other developments

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya⁰,^{1,*} Krzysztof Cichy,² Martha Constantinou⁰,^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee⁰,¹ Aurora Scapellato,³ Fernanda Steffens,⁵ and Yong Zhao⁴

arXiv:2310.13114v1 [hep-lat]

Generalized Parton Distributions from Lattice QCD

with Asymmetric Momentum Transfer: Axial-vector case

Shohini Bhattacharya,^{1,*} Krzysztof Cichy,² Martha Constantinou,^{2,†} Jack Dodson,² Xiang Gao,³ Andreas Metz,² Joshua Miller,^{2,‡} Swagato Mukherjee,⁴ Peter Petreczky,⁴ Fernanda Steffens,⁵ and Yong Zhao³

Motivation for GPDs studies

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

- - ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H} = \int_{-\infty}^{+\infty} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Hadron structure at core of nuclear physics

Hadron structure at core of nuclear physics

Office of

U.S. DEPARTMENT OF

Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Hadron structure at core of nuclear physics

Office of

U.S. DEPARTMENT OF

Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of *t* and ξ dependence

Advances of lattice QCD are timely

Twist-classification of PDFs, GPDs, TMDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-classification of PDFs, GPDs, TMDs

	Twist	-2 $(f_i^{(0)})$)	
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	T (σ^{+j})	
U	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized			Probabilistic interpretation
L		$\widetilde{H}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity		U O L O L O U Quark spin
Τ			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$	T ()

Provide a correlation between the transverse position and the longitudinal momentum of the quarks in the hadron and its mechanical properties (OAM, pressure, etc.)

[M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]

T

Twist-classification of PDFs, GPDs, TMDs

Provide a correlation between the transverse position and the longitudinal momentum of the quarks in the hadron and its mechanical properties (OAM, pressure, etc.)

[M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]

'ת'

Accessing information on GPDs

Accessing information on GPDs

Accessing information on GPDs

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

Through non-local matrix elements of momentum-boosted hadrons

Through non-local matrix elements of momentum-boosted hadrons

I will usually refer to unpolarized GPDs as an example

M. Constantinou, Pre-DNP Workshop 2023

Access of PDFs/GPDs on a Euclidean Lattice

- Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators
- ★ Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \quad \langle N(P_f) \,| \,\bar{\Psi}(z) \,\Gamma \,\mathcal{W}(z,0) \Psi(0) \,| \,N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$

Access of PDFs/GPDs on a Euclidean Lattice

- Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators
- ★ Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

Access of PDFs/GPDs on a Euclidean Lattice

- Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators
- ★ Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^{3})\right]u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

- Lorentz non-invariant parametrization
- Typically used in symmetric frame
- A non-symmetric setup may result to different functional form

for GPDs compared to the symmetric one

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

- ★ Calculation expected to be performed in symmetric frame to extract "standard" GPDs
- ★ Symmetric frame requires separate calculations at each *t*

- ★ Calculation expected to be performed in symmetric frame to extract "standard" GPDs
- ★ Symmetric frame requires separate calculations at each *t*

★ Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !

- ★ Calculation expected to be performed in symmetric frame to extract "standard" GPDs
- ★ Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

[S. Bhattacharya et al., PRD 106 (2022) 11, 114512]

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

- ★ Calculation expected to be performed in symmetric frame to extract "standard" GPDs
- ★ Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

[S. Bhattacharya et al., PRD 106 (2022) 11, 114512]

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

\star Unique relation between H, E GPDs and Amplitudes

$$\mathcal{H}_0^s(A_i^s;z) = A_1 + rac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6,$$

 $\xi = 0$
 $\mathcal{E}_0^s(A_i^s;z) = -A_1 - rac{m^2 z}{P_3}A_4 + 2A_5 - rac{z\left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3}A_6.$

\star Unique relation between H, E GPDs and Amplitudes

$$\begin{split} \mathcal{H}_0^s(A_i^s;z) &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ \boldsymbol{\xi} &= 0 \\ \mathcal{E}_0^s(A_i^s;z) &= -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z\left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

- ★ Kinematic coefficients defined in symmetric frame
- ★ Amplitudes extracted from any frame

\star Unique relation between *H*, *E* GPDs and Amplitudes

$$\mathcal{H}_0^s(A_i^s;z) = A_1 + rac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6,$$

 $\xi = 0$
 $\mathcal{E}_0^s(A_i^s;z) = -A_1 - rac{m^2 z}{P_3}A_4 + 2A_5 - rac{z\left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3}A_6.$

- ★ Kinematic coefficients defined in symmetric frame
- ★ Amplitudes extracted from any frame

Lorentz transformation of kinematic factors

\star Unique relation between H, E GPDs and Amplitudes

$$\begin{split} \mathcal{H}_0^s(A_i^s;z) &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ \boldsymbol{\xi} &= 0 \\ \mathcal{E}_0^s(A_i^s;z) &= -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z\left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

- ★ Kinematic coefficients defined in symmetric frame
- ★ Amplitudes extracted from any frame

Lorentz transformation of kinematic factors

- Proof-of-concept calculation ($\xi = 0$):
- symmetric frame: $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}$, $\vec{p}_i^s = \vec{P} \frac{\vec{Q}}{2}$ $-t^s = \vec{Q}^2 = 0.69 \, GeV^2$
- asymmetric frame: $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f E_i)^2 = 0.65 \, GeV^2$

Matrix element decomposition

$$\begin{aligned} \text{Symmetric} & \Pi_{s}^{0}(\Gamma_{0}) = C_{s} \left(\frac{E\left(E(E+m)-P_{s}^{2}\right)}{2m^{3}} A_{1} + \frac{(E+m)\left(-E^{2}+m^{2}+P_{s}^{2}\right)}{m^{3}} A_{5} + \frac{EP_{3}\left(-E^{2}+m^{2}+P_{s}^{2}\right)z}{m^{3}} A_{6} \right) \\ C_{s} &= \frac{2m^{2}}{E(E+m)} & \Pi_{s}^{0}(\Gamma_{1}) = iC_{s} \left(\frac{EP_{3}Q_{2}}{4m^{3}} A_{1} - \frac{(E+m)P_{3}Q_{2}}{2m^{3}} A_{5} - \frac{E\left(P_{3}^{2}+m(E+m)\right)zQ_{2}}{2m^{3}} A_{6} \right) \\ \Gamma_{j} &= \frac{i}{4}\left(1+\gamma^{0}\right) Y^{5}\gamma^{j} & \Pi_{s}^{0}(\Gamma_{2}) = iC_{s} \left(-\frac{EP_{3}Q_{1}}{4m^{3}} A_{1} + \frac{(E+m)P_{3}Q_{1}}{2m^{3}} A_{5} + \frac{E\left(P_{3}^{2}+m(E+m)\right)zQ_{2}}{2m^{3}} A_{6} \right) \\ \text{Asymmetric} & \Pi_{0}^{0}(\Gamma_{0}) = C_{a} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i}-2m)(E_{f}+m)(E_{f}-E_{i})}{4m^{3}} A_{5} \right) \\ C_{a} &= \frac{2m^{2}}{\sqrt{E_{i}E_{f}(E_{i}+m)(E_{f}+m)}} & + \frac{E_{f}P_{3}(E_{f}-E_{i})^{2}Z}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i})(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i})P_{3}Q_{2}}{4m^{3}} A_{5} + \frac{E_{f}(E_{f}+E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \\ H_{0}^{0}(\Gamma_{1}) &= iC_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+m)Q_{2}z}{4m^{3}} A_{4} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \right) \\ \Pi_{0}^{0}(\Gamma_{1}) &= iC_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} - \frac{(E_{f}+m)Q_{2}z}{2m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i}+2m)P_{3}Q_{1}}{4m^{3}} A_{5} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+m)Q_{1}z}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i}+2m)P_{3}Q_{1}}{4m^{3}} A_{5} \right) \\ \end{array}$$

╝

Matrix element decomposition

$$\begin{aligned} \text{Symmetric} & \Pi_{a}^{0}(\Gamma_{0}) = C_{a} \left(\frac{E(E(E+m)-P_{3}^{2})}{2m^{3}} A_{1} + \frac{(E+m)(-E^{2}+m^{2}+P_{3}^{2})}{m^{3}} A_{5} + \frac{EP_{3}(-E^{2}+m^{2}+P_{3}^{2})z}{m^{3}} A_{6} \right) \\ C_{s} &= \frac{2m^{2}}{E(E+m)} \\ \Gamma_{0} &= \frac{1}{2}(1+\gamma^{0}) \\ \Gamma_{0} &= \frac{1}{2}(1+\gamma^{0}) \\ \Gamma_{0} &= \frac{1}{2}(1+\gamma^{0}) \\ \Gamma_{j} &= \frac{i}{4}(1+\gamma^{0})\gamma^{5}\gamma^{j} \\ (j=1,2,3) \\ \end{aligned} \qquad \Pi_{a}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{EP_{3}Q_{1}}{4m^{3}} A_{1} + \frac{(E+m)P_{3}Q_{2}}{2m^{3}} A_{5} + \frac{E(P_{3}^{2}+m(E+m))zQ_{2}}{2m^{3}} A_{6} \right) \\ \end{aligned} \qquad \qquad \text{Novel feature:} \\ \mathbf{Asymmetric} \\ \Pi_{0}^{0}(\Gamma_{0}) &= C_{a} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{4m^{3}} A_{5} + \frac{E(P_{3}^{2}+m(E+m))(E_{f}-E_{i})}{4m^{3}} A_{6} \right) \\ \overset{(E_{i}-E_{j})P_{3}}{\sqrt{E_{i}E_{f}}(E_{i}+m)(E_{f}+m)} \\ A_{c} &= \frac{2m^{2}}{\sqrt{E_{i}E_{f}}(E_{i}+m)(E_{f}+m)} \\ H_{0}^{0}(\Gamma_{1}) &= iC_{a} \left(\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{E_{f}(E_{f}+E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{1}) &= iC_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+E_{i})P_{3}Q_{2}}{4m^{3}} A_{4} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{6} \right) \\ \Pi_{0}^{0}(\Gamma_{2}) &= iC_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{2m^{3}} A_{6} - \frac{(E_{f}+E_{i}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{6} - \frac{(E_{f}+E_{i}+E_{i})P_{3}Q_{2}}{4m^{3}} A_{6} + \frac{(E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{1}z}{4m^{3}} A_{6} + \frac{(E_{f}(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{6} + \frac{(E_{f}+E_{i})P_{3}Q_{2}}{4m^{3}$$

M. Constantinou, Pre-DNP Workshop 2023

╝

Matrix element decomposition

느느

Lorentz-Invariant amplitudes

Symmetric

$$A_1 = \frac{\left(m(E+m) + P_3^2\right)}{E(E+m)} \Pi_0^s(\Gamma_0) - i \frac{P_3 Q_1}{2E(E+m)} \Pi_0^s(\Gamma_2) - \frac{Q_1}{2E} \Pi_2^s(\Gamma_3)$$

$$A_5 = -\frac{E}{Q_1} \Pi_2^s(\Gamma_3)$$

$$A_{6} = \frac{P_{3}}{2Ez(E+m)}\Pi_{0}^{s}(\Gamma_{0}) + i \frac{\left(P_{3}^{2} - E(E+m)\right)}{EQ_{1}z(E+m)}\Pi_{0}^{s}(\Gamma_{2}) + \frac{P_{3}}{EQ_{1}z}\Pi_{2}^{s}(\Gamma_{3})$$

$$\begin{array}{ll} \text{Asymmetric} \quad A_{1} = \frac{2m^{2}}{E_{f}(E_{i}+m)} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \, \frac{2(E_{f}-E_{i})P_{3}m^{2}}{E_{f}(E_{f}+m)(E_{i}+m)Q_{1}} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}} \\ + i \, \frac{2(E_{i}-E_{f})m^{2}}{E_{f}(E_{i}+m)Q_{1}} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} + \frac{2(E_{f}-E_{i})m^{2}}{E_{f}(E_{i}+m)Q_{1}} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}} \end{array}$$

$$A_5 = \frac{m^2 P_3}{E_f(E_f + m)(E_i + m)} \frac{\Pi_2^a(\Gamma_1)}{C_a} - \frac{(E_f + E_i)m^2}{E_f(E_i + m)Q_1} \frac{\Pi_2^a(\Gamma_3)}{C_a}$$

$$A_{6} = \frac{P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i\frac{(E_{f}-E_{i}-2m)m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + i\frac{(E_{i}-E_{f})P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)Q_{1}z} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}} + \frac{(-E_{f}+E_{i}+2m)m^{2}}{E_{f}^{2}(E_{f}+E_{i})(E_{i}+m)z} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(m-E_{f})m^{2}}{E_{f}^{2}(E_{f}+E_{i})(E_{i}+m)z} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} + \frac{2P_{3}m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}}$$

- ★ Asymmetric frame equations more complex
- \star A_i have definite symmetries
- \star System of 8 independent matrix elements to disentangle the A_i

Lorentz-Invariant amplitudes

Symmetric $A_1 = \frac{\left(m(E+m) + P_3^2\right)}{E(E+m)} \Pi_0^s(\Gamma_0) - i \frac{P_3 Q_1}{2E(E+m)} \Pi_0^s(\Gamma_2) - \frac{Q_1}{2E} \Pi_2^s(\Gamma_3)$ $A_5 = -\frac{E}{\Omega_1} \Pi_2^s(\Gamma_3)$ $\mathbf{A}_{6} = \frac{P_{3}}{2Ez(E+m)}\Pi_{0}^{s}(\Gamma_{0}) + i\frac{\left(P_{3}^{2} - E(E+m)\right)}{EQ_{1}z(E+m)}\Pi_{0}^{s}(\Gamma_{2}) + \frac{P_{3}}{EQ_{1}z}\Pi_{2}^{s}(\Gamma_{3})$ $A_{1} = \frac{2m^{2}}{E_{f}(E_{i}+m)} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{2(E_{f}-E_{i})P_{3}m^{2}}{E_{f}(E_{f}+m)(E_{i}+m)Q_{1}} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}}$ $+i\frac{2(E_{i}-E_{f})m^{2}}{E_{f}(E_{i}+m)Q_{1}}\frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{f}}+\frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)}\frac{\Pi_{2}^{a}(\Gamma_{1})}{C}+\frac{2(E_{f}-E_{i})m^{2}}{E_{f}(E_{i}+m)Q_{1}}\frac{\Pi_{2}^{a}(\Gamma_{3})}{C}$ $A_{5} = \frac{m^{2}P_{3}}{E_{f}(E_{f} + m)(E_{i} + m)} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} - \frac{(E_{f} + E_{i})m^{2}}{E_{f}(E_{i} + m)Q_{1}} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}}$ $A_{6} = \frac{P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{(E_{f}-E_{i}-2m)m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + i \frac{(E_{i}-E_{f})P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)Q_{1}z} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}}$ $+\frac{(-E_f+E_i+2m)m^2}{E_f^2(E_f+E_i)(E_i+m)z}\frac{\Pi_1^a(\Gamma_2)}{C_a}+\frac{2(m-E_f)m^2}{E_f^2(E_f+E_i)(E_i+m)z}\frac{\Pi_2^a(\Gamma_1)}{C_a}+\frac{2P_3m^2}{E_f^2(E_i+m)Q_1z}\frac{\Pi_2^a(\Gamma_3)}{C_a}$

- ★ Asymmetric frame equations more complex
- \star A_i have definite symmetries

 \star System of 8 independent matrix elements to disentangle the A_i

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

- isovector combination
- zero skewness
- T_{sink}=1 fm

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q} \; \left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	N_{ME}	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

★ Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each *t*)

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

	W(z)
nbination	$N(\overrightarrow{P}_{f},0)$

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

- \star Calculation:
 - isovector combina
 zero skewness
 - T_{sink}=1 fm

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q}\;[rac{2\pi}{L}]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216
Small c	differenc	e: $t^{s} = -$	\overrightarrow{O}^2	t ^a	= -	\vec{Q}^2 +	$(E_{f} \cdot$	$(-E_i)^2$

 $t^{s} = -Q^{2}$ $t^{a} = -Q^{2} + (E_{f} - E_{i})^{s}$ $A(-0.65 \text{GeV}^{2}) \sim A(-0.69 \text{GeV}^{2})$

- **★** Computational cost:
 - symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each *t*)

\star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

Eight independent matrix elements needed to disentangle the A_i

Comparison of A_i in two frames

Unpolarized GPDs

- ★ A_1, A_5 dominant contributions
- **★** Full agreement in two frames for both Re and Im parts of A_1, A_5
- ★ A_3, A_4, A_8 zero at $\xi = 0$
- ★ A_2, A_6, A_7 suppressed (at least for this kinematic setup and $\xi = 0$)

 $egin{array}{c} A_1^s \ A_1^a \ A_1^a \end{array}$

 A_5^s

 A_5^a

Comparison of A_i in two frames

Unpolarized GPDs

M. Constantinou, Pre-DNP Workshop 2023

 $egin{array}{c} A_1^s \ A_1^a \ A_5^s \ A_5^a \ A_5^a \end{array}$

φ

⊳

Extension of asymm. frame calculation

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

frame	P_3 [GeV]	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), \ (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Extension of asymm. frame calculation

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

frame	P_3 [GeV]	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{ m GeV}^2]$	ξ	N_{ME}	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Symmetric frame very expensive computationally

H, E light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region
- ★ Anti-quark region susceptible to systematic uncertainties

H, E light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region

Anti-quark region susceptible to systematic uncertainties

$$\star F^{[\gamma^{3}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda') \left[\gamma^{3}\gamma_{5}\widetilde{\mathcal{H}}_{3}(x,\xi,t;P^{3}) + \frac{\Delta^{3}\gamma_{5}}{2m}\widetilde{\mathcal{E}}_{3}(x,\xi,t;P^{3})\right]u(p_{i},\lambda)$$

$$\star \widetilde{F}^{\mu}(z,P,\Delta) = \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + m\not{z}\gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{6} + mz^{\mu}\widetilde{A}_{7} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{8}\right)\right]u(p_{i},\lambda),$$

$$\star F^{[\gamma^{3}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda') \left[\gamma^{3}\gamma_{5}\widetilde{\mathcal{H}}_{3}(x,\xi,t;P^{3}) + \frac{\Delta^{3}\gamma_{5}}{2m}\widetilde{\mathcal{E}}_{3}(x,\xi,t;P^{3})\right]u(p_{i},\lambda)$$

$$\star \widetilde{F}^{\mu}(z,P,\Delta) = \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + m\not{z}\gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{6} + mz^{\mu}\widetilde{A}_{7} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{8}\right)\right]u(p_{i},\lambda),$$

$$\widetilde{\mathcal{H}}_{3}(\widetilde{A}_{i}^{s/a};z) = \widetilde{A}_{2} + zP_{3}\widetilde{A}_{6} - m^{2}z^{2}\widetilde{A}_{7}$$

\star Large values of -t not reliably extracted

'זנ'

Final \widetilde{E} -GPD cannot be extracted directly at $\xi = 0$

t Large values of -t not reliably extracted

'זנ'

Figure \widetilde{E} -GPD cannot be extracted directly at $\xi = 0$

Glimpse of \widetilde{E} from twist-3 GPDs

3D Nucleon Structure Minisymposium: Constantinou, Tue @ 7 pm

Transversity GPDs

Standard parametrization

Transversity GPDs

Transversity GPDs

M. Constantinou, Pre-DNP Workshop 2023

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints & predictive power of lattice QCD

M. Constantinou, Pre-DNP Workshop 2023

Composition of QGT Collaboration

Composition of QGT Collaboration

★ ~35 students and postdocs

Composition of QGT Collaboration

★ ~35 students and postdocs

T

Three bridge faculty positions will be created in nuclear theory Stony Brook & Temple: Faculty positions in Fall 2024

QGT-related Publications

1. "Gluon helicity in the nucleon from lattice QCD and machine learning", Khan, Liu, Sabbir Sufian, Physical Review D, Accepted, 2023.

2. "Moments of proton GPDs from the OPE of nonlocal quark bilinears up to NNLO", Bhattacharya Cichy, Constantinou, Gao, Metz, Miller, Mukherjee, Petreczky, Steffens, Zhao, *Physical Review D*, DOI: 10.1103/PhysRevD.108.014507.

3. "Generalized parton distributions through universal moment parameterization: non-zero skewness case", Guo, Ji, Santiago, Shiells, Yang, *Journal of High Energy Physics*, DOI: 10.1007/JHEP05(2023)150.

4. "Hadronic structure on the light-front VI. Generalized parton distributions of unpolarized hadrons", Shuryak, Zahed, *Physical Review D*, DOI: 10.1103/ PhysRevD.107.094005.

5. "Chiral-even axial twist-3 GPDs of the proton from lattice QCD", Bhattacharya, Cichy, Constantinou, Dodson, Metz, Scapellato, Fernanda Steffens, *Physical Review D*, DOI: 10.1103/PhysRevD.108.054501.

6. "Shedding light on shadow generalized parton distributions", Moffat, Freese, Cloët, Donohoe, Gamberg, Melnitchouk, Metz, Prokudin, Sato, *Physical Review D*, DOI: 10.1103/PhysRevD.108.036027.

7. "Colloquium: Gravitational Form Factors of the Proton", Burkert, Elouadrhiri, Girod, Lorcé, Schweitzer, Shanahan, Physical Review D, Under Review.

8. "Synchronization effects on rest frame energy and momentum densities in the proton", Freese, Miller, eprint: 2307.11165.

9. "Proton's gluon GPDs at large skewness and gravitational form factors from near threshold heavy quarkonium photo-production", Guo, Ji, Yuan, e-Print: 2308.13006.

10. "Parton Distributions from Boosted Fields in the Coulomb Gauge", Gao, Liu, Zhao, e-Print: 2306.14960.

11. "Exactly solvable models of nonlinear extensions of the Schrödinger equation", Dodge, Schweitzer, e-Print: 2304.01183.

12. "Role of strange quarks in the D-term and cosmological constant term of the proton", Won, Kim, Kim, e-Print: 2307.00740.

13. "Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays", Ma, Feng, Gorchtein, Jin, Liu, Seng, Wang, Zhang, e-Print: 2308.16755.

Summary

- ★ Definitions of quasi-GPDs on Euclidean lattice: intrinsically frame dependent. Historically used symmetric frame is computationally very expensive
- **Novel Lorentz covariant decomposition has great advantages:**
 - access to symmetric-frame GPDs from matrix elements in any frame
 - significant reduction of computational cost
 - access to a broad range of t and ξ
- ★ Numerical results demonstrate the validity of the approach
- **★** Future calculations have the potential to transform the field of GPDs
- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV.
- **★** Synergy with phenomenology is an exciting prospect!

Summary

- ★ Definitions of quasi-GPDs on Euclidean lattice: intrinsically frame dependent. Historically used symmetric frame is computationally very expensive
- ★ Novel Lorentz covariant decomposition has great advantages:
 - access to symmetric-frame GPDs from matrix elements in any frame
 - significant reduction of computational cost
 - access to a broad range of t and ξ
- ★ Numerical results demonstrate the validity of the approach
- **★** Future calculations have the potential to transform the field of GPDs
- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV.
- **★** Synergy with phenomenology is an exciting prospect!

DOE Early Career Award (NP) Grant No. DE-SC0020405

