Gravitational form factors on the lattice

SoLID Opportunities and Challenges of Nuclear Physics at the Luminosity Frontier

Jun 17, 2024

Dan Hackett (FNAL)

Patrick Oare (MIT) Dimitra Pefkou (Berkeley) Phiala Shanahan (MIT)

Outline

Gravitational structure of the nucleon Gravitational form factors (GFFs)? Why are GFFs interesting?

GFFs on the lattice

Overview of calculation

Results

GFFs of proton (w/ flavor decomp) Experimental comparison

Mechanical densities & radii

2307.11707

Gravitational form factors of the pion from lattice QCD

Daniel C. Hackett, Patrick R. Oare, Dimitra A. Pefkou, and Phiala E. Shanahan Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

The two gravitational form factors of the pion, $A^{\pi}(t)$ and $D^{\pi}(t)$, are computed as functions of the momentum transfer squared t in the kinematic region $0 \leq -t < 2 \text{ GeV}^2$ on a lattice QCD ensemble with quark masses corresponding to a close-to-physical pion mass $m_{\pi} \approx 170$ MeV and $N_f = 2 + 1$ quark flavors. The flavor decomposition of these form factors into gluon, up/down light-quark, and strange quark contributions is presented in the $\overline{\text{MS}}$ scheme at energy scale $\mu = 2$ GeV, with renormalization factors computed non-perturbatively via the RI-MOM scheme. Using monopole and z-expansion fits to the gravitational form factors, we obtain estimates for the pion momentum fraction and D-term that are consistent with the momentum fraction sum rule and the next-to-leading order chiral perturbation theory prediction for $D^{\pi}(0)$.

2310.08484

Gravitational form factors of the proton from lattice QCD

Daniel C. Hackett,^{1,2} Dimitra A. Pefkou,^{3,2} and Phiala E. Shanahan²

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. ³Department of Physics, University of California, Berkeley, CA 94720, U.S.A

The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from e.g., its energy density. This work presents a determination of the flavor decomposition of the GFFs of the proton from lattice QCD, in the kinematic region $0 \leq -t \leq 2 \text{ GeV}^2$. The decomposition into up-, down-, strange-quark, and gluon contributions provides first-principles constraints on the role of each constituent in generating key proton structure observables, such as its mechanical radius, mass radius, and *D*-term.

Gravitational structure of the nucleon

SoLID Workshop - Dan Hackett - 6/17/24

Gravitational form factors (GFFs)

GFFs are EMT form factors

$$T^{\{\mu\nu\}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu}G^{\nu}_{\alpha} + \frac{1}{4}g^{\mu\nu}G^{\alpha\beta}G_{\alpha\beta} \right] + \bar{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$

Nucleon:

$$\left\langle N(p') \left| T^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

Why are these interesting?

$$a^{\{\mu}b^{\nu\}} \equiv \frac{1}{2}(a^{\mu}b^{\nu} + a^{\nu}b^{\mu})$$

$$\overrightarrow{D} = (\overrightarrow{D} - \overleftarrow{D})/2$$

$$U, \overrightarrow{U} = \text{Dirac spinors}$$

$$P = (p' + p)/2$$

$$\Delta = p' - p$$

$$t = \Delta^{2}$$

SoLID Workshop - Dan Hackett - 6/17/24

Global properties

$$\left\langle N(p') \left| T^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

 $\partial_{\mu}T^{\mu\nu} = 0 \rightarrow \text{GFFs}$ are scale- and scheme-independent Forward GFFs are fundamental, global properties:

$$\begin{array}{l} A(0) = 1 \iff \langle p | T^{tt} | p \rangle = M \\ J(0) = \frac{1}{2} = \text{Total spin} \\ B(0) = 2J(0) - A(0) = 0 \quad \text{"vanishing of the anomalous gravitomagnetic moment"} \\ D(0) = ???* \quad (\text{internal forces}) \end{array}$$

Flavor decomposition

Gluons
$$T_g^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$$
 Quarks $T_q^{\{\mu\nu\}} = \overline{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}} q$

$$\left\langle N(p') \Big| T_{g,q}^{\{\mu\nu\}} \Big| N(p) \right\rangle = \bar{u}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \bar{c}_{g,q}(t)Mg^{\mu\nu} \right] u(p)$$

Flavor decomposition

Gluons
$$T_g^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$$
 Quarks $T_q^{\{\mu\nu\}} = \overline{q} \gamma^{\{\mu}i \overleftrightarrow{D}^{\nu\}} q$

$$\begin{split} \left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle &= \bar{u}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^2}{4M} + \bar{c}_{g,q}(t) M g^{\mu\nu} \right] u(p) \end{split}$$

Not conserved $\sum_{q} \bar{c_q} + \bar{c_g} = 0$

Power-divergent mixing

Flavor decomposition

Gluons $T_g^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$ Quarks $T_q^{\{\mu\nu\}} = \overline{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}} q$

Momentum fraction

 $A_{q,g}(0) = \langle x \rangle_{q,g}$ $A_g(0) + \sum_q A_q(0) = 1$

Spin fraction

$$J_g(0) + \sum_q J_q(0) = \frac{1}{2}$$

$$\begin{split} \left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle &= \bar{u}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \bar{c}_{g,q}(t) Mg^{\mu\nu} \right] u(p) \end{split}$$

Internal forces $D(0) = D_g(0) + \sum_q D_q(0)$ Not conserved $\sum_{q} \dot{c_q} + \dot{c_g} = 0$ Power-divergent mixing

GFFs are Mellin moments of GPDs, e.g.

$$\int dx \, x \, H_q(x,\xi,t) = A_q(t) + \xi^2 D_q(t) \qquad \int dx \, H_g(x,\xi,t) = A_g(t) + \xi^2 D_g(t)$$
$$\int dx \, x \, E_q(x,\xi,t) = B_q(t) - \xi^2 D_q(t) \qquad \int dx \, E_g(x,\xi,t) = B_g(t) - \xi^2 D_g(t)$$

 \rightarrow relate to experiment via factorization

SoLID Workshop - Dan Hackett - 6/17/24

GFFs on the lattice

Overview of calculation

Need to compute:

Bare matrix elements for $f \in \{g, u, d, s\}$ to constrain bare GFFs

$$\langle p' | T_f^{\mathrm{b}}(\Delta) | p \rangle = c_A A_f^{\mathrm{b}}(t) + c_J J_f^{\mathrm{b}}(t) + c_D D_f^{\mathrm{b}}(t)$$

Isosinglet mixing matrix (+ non-singlet Z_{u+d-2s})

$$\begin{bmatrix} T_q^{\overline{MS}} \\ T_g^{\overline{MS}} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix} \begin{bmatrix} T_q^{\text{bare}} \\ T_g^{\text{bare}} \end{bmatrix}$$

→ Renormalized linear constraints on GFFs at different values of $t = \Delta^2 = (p' - p)^2$ Fit to extract GFFs(t)

100 50 -50 -100-0.50.0 0.5 1.0 -2.0 -1.51.5 2.0 A

Ensembles

Gauge action: tadpole-improved Luscher-Weisz

Fermion action: 2 + 1 flavors, stout-smeared clover

	L/a	T/a	eta	am_l	am_s	$a~[{ m fm}]$	$m_{\pi} \; [{ m MeV}]$	
Α	48	96	6.3	-0.2416	-0.2050	0.091(1)	169(1)	
В	12	24	6.1	-0.2800	-0.2450	0.1167(16)	450(5)	-

Bare matrix elements

Glue: 2511 configs Quarks: 1381 configs (subset) ["a091m170" (JLab/W&M/MIT/LANL)]

Renormalization

Conn. quark: 240 configs Disco./glue: 20000 configs

Ensembles

Gauge action: tadpole-improved Luscher-Weisz

Fermion action: 2 + 1 flavors, stout-smeared clover

Bare matrix elements

Glue: 2511 configs Quarks: 1381 configs (subset) ["a091m170" (JLab/W&M/MIT/LANL)]

Renormalization

Conn. quark: 240 configs Disco./glue: 20000 configs

"Single"-ensemble calculation: can't quantify remaining artifacts due to discretization, unphysical quark masses, finite volume

SoLID Workshop - Dan Hackett - 6/17/24

Lattice EMT operators

Quark:
$$T_q^{\{\mu\nu\}} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$

Discretized covariant derivative

 $\begin{aligned} &\overleftrightarrow{D} = (\overrightarrow{D} - \overleftarrow{D})/2\\ &(\overrightarrow{D}_{\mu}\psi)(x) = \frac{1}{2} \big[U_{\mu}(x)\psi(x+\mu) - U_{\mu}^{\dagger}(x-\mu)\psi(x-\mu) \big]\\ &(\overline{\psi}\,\overleftarrow{D}_{\mu})(x) = \frac{1}{2} \big[\overline{\psi}(x+\mu)U_{\mu}^{\dagger}(x) - \overline{\psi}(x-\mu)U_{\mu}(x-\mu) \big]\end{aligned}$

Glue:
$$T_g^{\{\mu\nu\}} = \frac{2}{g^2} \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$$

Clovers flowed to $t/a^2 = 2$

$$G_{\mu\nu} \sim \left(Q_{\mu\nu} - Q_{\mu\nu}^{\dagger} \right)$$

Project to irreps of hypercubic group

$$\begin{split} \tau_1^{(3)} &: \quad \frac{1}{2} (T^{xx} + T^{yy} - T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{xx} - T^{yy}) \\ \tau_3^{(6)} &: \quad \left\{ \frac{i^{\delta_{\mu 0}}}{\sqrt{2}} (T^{\mu \nu} + T^{\nu \mu}), \quad 0 \le \mu \le \nu \le 3 \right\} \end{split}$$

Bare matrix elements from three-point functions

Can't compute matrix elements directly, must extract from

 $\langle \chi(p',t_f) T^{b}(\Delta,\tau) \bar{\chi}(p,0) \rangle \sim Z_{p'} Z_p \langle p' | T^{b}(\Delta) | p \rangle e^{-E'(t_f-\tau)-E\tau} + (\text{excited states})$

Bare matrix elements from three-point functions

Can't compute matrix elements directly, must extract from

 $\langle \chi(p',t_f) T^{b}(\Delta,\tau) \bar{\chi}(p,0) \rangle \sim Z_{p'} Z_p \langle p' | T^{b}(\Delta) | p \rangle e^{-E'(t_f-\tau)-E\tau} + (\text{excited states})$

Connected Quark (u, d)

Sequential source (thru sink)

- 3 sink momenta
- 1 spin channel
- Sources / cfg varies w/ t_f

Disconnected Quark (u = d, s)

- 1024 sources / cfg
- 4 spin channels
- Hierarchical probing w/ 512 Hadamard vectors
- $2Z_4$ noise shots / cfg

Glue (disconnected)

- 1024 sources / cfg
- 4 spin channels

Extracting bare matrix elements

1. Construct ratios

$$R(p,p';\tau,t_f) = \frac{C^{3\text{pt}}(p,p';t_f,\tau)}{C^{2\text{pt}}(p';t_f)} \sqrt{\frac{C^{2\text{pt}}(p;t_f-\tau)}{C^{2\text{pt}}(p';t_f-\tau)}} \frac{C^{2\text{pt}}(p';t_f)}{C^{2\text{pt}}(p;t_f)} \frac{C^{2\text{pt}}(p';\tau)}{C^{2\text{pt}}(p;\tau)}$$
$$= \# \langle p'|T^b(\Delta)|p \rangle + O\left(e^{-\Delta E \tau - \Delta E'(t_f-\tau)}\right)$$
Number of distinct ratios

2. Bin ratios together w/ same kinematic coeffs
 3. Fit using "summation method"

conn q: 6982
$$\rightarrow$$
 3081

disc q/g: 1200296 → 11452

 $\Sigma(t_f) = \sum_{\tau=\tau_{\text{cut}}}^{t_f-\tau_{\text{cut}}} R(\tau, t_f) = (\text{const}) + \# \langle p' | T^b(\Delta) | p \rangle t_f + O(e^{-\delta E t_f})$

... w/ Bayesian model averaging over fit ranges, $au_{
m cut}$

Example nucleon ratios

Renormalization

Assert RI-MOM conditions at scale $\mu^2 = p^2$

$$\left\langle q(p) T_f(0) \bar{q}(p) \right\rangle_{\text{lattice}} = Z_q R_{fq}^{\text{RI}} \left\langle q(p) T_f(0) \bar{q}(p) \right\rangle_{\text{tree}}$$
$$\left\langle A(p) T_f(0) A(p) \right\rangle_{\text{lattice}} = Z_g R_{fg}^{\text{RI}} \left\langle A(p) T_f(0) A(p) \right\rangle_{\text{tree}}$$

...in Landau gauge

...flow T_g to $t/a^2 = 1.2$ to match operator in bare matrix elements

Apply perturbative matching to \overline{MS} and run to $\mu = 2 \text{ GeV}$

$$\left(Z_{u-d}^{\overline{MS}}\right)^{-1}(\mu^2) = C_{u-d}^{\mathrm{RI}/\overline{MS}}(\mu^2,\mu_R^2) R_{u-d}^{\mathrm{RI}}(\mu_R^2)$$

$$\begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix}^{-1} (\mu^2) = \begin{bmatrix} R_{qq}^{RI} & R_{qg}^{RI} \\ R_{gq}^{RI} & R_{gg}^{RI} \end{bmatrix} (\mu_R^2) \begin{bmatrix} C_{qq}^{RI/\overline{MS}} & C_{qg}^{RI/\overline{MS}} \\ C_{gq}^{RI/\overline{MS}} & C_{gg}^{RI/\overline{MS}} \end{bmatrix} (\mu^2, \mu_R^2)$$

Model and fit residual $(ap)^2$ dependence in each of product $R^{RI} C^{RI/MS}$

SoLID Workshop - Dan Hackett - 6/17/24

Renormalization: removing discretization artifacts

SoLID Workshop - Dan Hackett - 6/17/24

Renormalization: removing discretization artifacts

Model discretization artifacts as polynomials, inverse polynomials

+ logs for nonperturbative⁻² effects -4

Results

		Dipole	z-expansion			
	A_i	J_i	D_i	A_i	J_i	D_i
u	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)

		Dipole		;	z-expansion	
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
S	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
			/			

Sum rules (consistency check)

		Dipole			z-expansion	
	A_i	J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
		Sum	n rules (consis	stency check)		
cf. glc	bal fit result					
$A_g($	(0) = 0.414(8)					
[Hou e	t al. 1912.10053]					

		Dipole	z-expansion				
	A_i	J_i	D_i	A_i	J_i	D_i	
u	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)	
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)	
8	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)	
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)	
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)	
Total	1.011(37)	0.50 6(2 5)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)	
		Sum	rules (consis	степсу спеск)			
cf. glo <i>A_g</i> [Hou e	obal fit result (0) = $0.414(8)$ et al. 1912.10053]	First determination! Satisfies χ PT bound $D(0)/M \le -1.1(1) \text{ GeV}^{-1}$					

SoLID Workshop - Dan Hackett - 6/17/24

Nucleon vs. experiment

(G)FFs and Tomography

Fourier-transformed form factors provide information about spatial densities

Example: electric charge density in the neutron from G_E^n

Atac, Constantinou, Meziani, Paolone, Sparveris 2103.10840

Applies also for GFFs \rightarrow mechanical densities

Mechanical densities from GFFs

- 1. Parametrize $T_{\mu\nu}(t)$ with GFFs
- 2. Fourier transform $T_{\mu\nu}(t) \rightarrow T_{\mu\nu}(r)$
- 3. Identify

$$T_{\mu\nu}(r) = \begin{bmatrix} T_{tt}(r) & \\ & T_{ij}(r) \end{bmatrix} = \begin{bmatrix} \epsilon(r) & \\ & \left(\frac{r_i r_j}{r^2} - \frac{1}{d} \delta_{ij}\right) s(r) + \delta_{ij} p(r) \end{bmatrix}$$

$$[f(t)]_{\rm FT} = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta} \cdot \mathbf{r}} f(t)$$

Mechanical densities from GFFs

- 1. Parametrize $T_{\mu\nu}(t)$ with GFFs
- 2. Fourier transform $T_{\mu\nu}(t) \rightarrow T_{\mu\nu}(r)$
- 3. Identify

$$T_{\mu\nu}(r) = \begin{bmatrix} T_{tt}(r) & \\ & T_{ij}(r) \end{bmatrix} = \begin{bmatrix} \epsilon(r) & \\ & \left(\frac{r_i r_j}{r^2} - \frac{1}{d} \delta_{ij}\right) s(r) + \delta_{ij} p(r) \end{bmatrix}$$

 \rightarrow Spatial densities (Breit frame)

energy
$$\epsilon(r) = M \left[A(t) - \frac{t}{4M^2} \left(D(t) + A(t) - 2J(t) \right) \right]_{FT}$$
 shear forces $s(r) = -\frac{1}{4M} r \frac{d}{dr} \frac{1}{r} \frac{d}{dr} \left[D(t) \right]_{FT}$
pressure $p(r) = \frac{1}{6M} \frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} \left[D(t) \right]_{FT}$ longitudinal force $F^{\parallel}(r) = p(r) + \frac{2s(r)}{3}$

Caveat: physical significance of these analogies is under debate

SoLID Workshop - Dan Hackett - 6/17/24

$$[f(t)]_{\rm FT} = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta} \cdot \mathbf{r}} f(t)$$

How big is a proton?

Conclusion

First lattice calculation of:

complete flavor decomposition of nucleon GFFs total GFFs \rightarrow physical (i.e. RGI) densities, radii D(0)

New first-principles descriptions of size and shape of nucleon

Results can help discriminate between different experimental extractions

Towards a precision calculation, need:

Multiple ensembles to take continuum, physicalmass limits

Improved renormalization (GIRS? Flow? Sum rules?) Better methods to fully control excited state effects

26

Backup

Two-point functions

Compute on 2511 configs, 1024 srcs/cfg (2x offset $4^3 \times 8$ grids)

Note: only one interpolating operator; both diagonal spin channels

Relativistic dispersion obeyed at $\sim \%$ level

 \rightarrow Neglect errors in $aM_{\pi} = 0.0779$ and $aM_N = 0.4169$

28

Example pion ratios: $\tau_1^{(3)}$

Pion GFFs (flavor decomp)

Hatched bands: monopole Solid bands: z-expansion

Pion GFFs (total)

Error on χ PT estimate due to different estimates for LECs [Donaghue Leutwyler 1991]

Nucleon: bare disconnected GFFs

SoLID Workshop - Dan Hackett - 6/17/24

Pion: bare disconnected GFFs

SoLID W

41

43

Pion: split irreps

SoLID Workshop - Dan Hackett - 6/17/24

Nucleon: split irreps

SoLID Workshop - Dan Hackett - 6/17/24