## Hadron densities on the light front

Adam Freese Thomas Jefferson National Accelerator Facility June 17, 2024

#### Introduction

- ► The proton is a rich and complicated system.
- ► It's more than just three quarks.
  - The masses don't even add up.

 $\begin{array}{l} 2m_u+m_d\approx 9.4~{\rm MeV}\\ \\ m_p\approx 940~{\rm MeV} \end{array}$ 

- Quark-gluon interactions somehow generate mass.
- ► How does this happen?
- ...and where is the mass inside the proton?
  - ► This is what **imaging** is all about.

On right: artist's impression of the proton, CERN



#### 1. The light front

How do spatial densities work for quantum relativistic systems?

Outline

#### 2. Factorization framework

How can internal structure and wave packet artifacts be separated?

#### 3. Spin-half systems

- What complications does spin introduce?
- 4. The energy-momentum tensor
  - Where is the mass inside the proton?

## I. Why use the light front?

## Positions and wave packets

 $\Psi(\boldsymbol{R})$ 

- Quantum objects have two kinds of spatial extent:
  - 1. Distance between constituents
  - 2. Wave packet size



 $\psi_{\text{total}}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) = \Psi(\boldsymbol{R}, t)\psi(\boldsymbol{r}, t)$ 

Internal structure is the interesting part

We want *this*!

 $\psi(\mathbf{r})$ 

×

## Imaging with Fourier transforms

- ► We measure structure via scattering
- ► This gives momentum info
- Get position info with **Fourier transform**:

$$\psi(\boldsymbol{r},t) = \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \widetilde{\psi}(\boldsymbol{p}) \, \mathrm{e}^{\mathrm{i}(\boldsymbol{p}\cdot\boldsymbol{r}-Et)}$$

Only works when wave packets factorize:

 $\psi_{\text{total}}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) = \Psi(\boldsymbol{R}, t)\psi(\boldsymbol{r}, t)$ 

• **Relativity** makes this break down



Image credit: Jefferson Lab

## Relativity of simultaneity

- ► Momentum-space wave packet contains boosted versions of composite system
  - Boosts mix up planes of simultaneity
  - Internal constituents get boosted to different times



- Cannot decompose structure to overall wave packet  $\otimes$  internal structure at fixed t
- ► Light front coordinates fix this by defining a new, boost-invariant time variable!

## **Light front coordinates**

- Partonic images are described by light front coordinates.
- Light front coordinates are a different foliation of spacetime.
  - Involves redefining equal-time surfaces.



Minkowski coordinates

2

### Synchronization vs. seeing



- ► Fixed *t* surfaces require coordination
  - Distant clocks must be synchronized
  - Must wait for light to arrive
  - Reconstruct after the fact
  - Ruined by boosts
- Fixed  $x^+$  surfaces require looking
  - Look in the +z direction
  - That's a fixed  $x^+$  surface
  - Invariant under boosts!
  - Allow relativistic densities

## **Transverse boosts and Terrell rotations**

- ► Lorentz-boosted objects *appear rotated*.
  - ► **Terrell rotation** (PR116, 1959)
  - Optical effect: contraction + delay
- Light front transverse boost undoes Terrell rotation:

$$B_x^{(\mathrm{LF})} = K_x - J_y$$

- Standard boost + counter-rotation
- Leaves  $x^+$  (time) invariant
- Part of the Galilean subgroup



Dice images by Ute Kraus, https://www.spacetimetravel.org/

## Galilean subgroup

- ► Poincaré group has a (2 + 1)D **Galilean subgroup**.
  - $x^+$  is time and  $x_{\perp}$  is space under this subgroup.
  - $P^+ = E_p + p_z$  is the central charge.
  - $x^+$  and  $\dot{P}^+$  are invariant under this subgroup!
- Light front time gives **fully relativistic** 2D picture that looks a lot like non-relativistic physics.
  - But with  $P^+$  in place of m.

$$\begin{split} \frac{\mathrm{d} \boldsymbol{P}_{\perp}}{\mathrm{d} x^{+}} &= P^{+} \frac{\mathrm{d}^{2} \boldsymbol{x}_{\perp}}{\mathrm{d} x^{+2}} \\ H &= H_{\mathrm{rest}} + \frac{\boldsymbol{P}_{\perp}^{2}}{2P^{+}} \\ \boldsymbol{v}_{\perp} &= \frac{\boldsymbol{P}_{\perp}}{P^{+}} \end{split}$$



## Galilean subgroup and densities

► Wave packet separation works for *transverse* spatial coordinates



- Works thanks to the Galilean subgroup
- Stuck with 2D spatial densities
- Generalized parton distributions give back a third dimension
  - But the third dimension *must be* a momentum

## **II. Factorization framework**

## Inadequacy of localization

► For some densities, can use localized wave packets:

 $j^+_{\rm internal}(\boldsymbol{b}_{\perp}) \equiv \langle \boldsymbol{R}_{\perp} = \boldsymbol{0}_{\perp}, P^+ | \hat{J}^+(\boldsymbol{b}_{\perp}, x^+ = 0) | \boldsymbol{R}_{\perp} = \boldsymbol{0}_{\perp}, P^+ \rangle$ 

- Transverse localization possible because of Galilean subgroup.
- ► For other densities, this doesn't work:

$$\langle \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, P^+ | T^{ij}(\mathbf{b}_{\perp}, x^+ = 0) | \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, P^+ \rangle \sim \langle P^i_{\perp} P^j_{\perp} \rangle \to \infty$$

- Consequence of uncertainty principle.
- Can instead factorize physical expectation value:

 $\langle \psi | \hat{J}^{\mu}(x) | \psi 
angle =$  wave packet dependence  $\otimes$  internal structure

- ► Yang Li *et al*: PLB (2023), 2405.06892
- AF & Miller: PRD108 (2023)

## Electromagnetic densities

Physical four-current given by quantum expectation value:

$$\langle \psi | \hat{J}^{\mu}(x) | \psi \rangle = \int \frac{\mathrm{d}p^{+} \,\mathrm{d}^{2} \boldsymbol{p}_{\perp}}{2p^{+}(2\pi)^{3}} \int \frac{\mathrm{d}p'^{+} \,\mathrm{d}^{2} \boldsymbol{p}_{\perp}'}{2p'^{+}(2\pi)^{3}} \langle \psi | p' \rangle \langle p' | \hat{J}^{\mu}(x) | p \rangle \langle p | \psi \rangle$$

- Depends on wave packet—not entirely internal.
- Light front allows exact factorization:

- Move wave packet dependence into **smearing function**.
- Call what remains the "internal" density.
- Only possible on light front: proof in AF & Miller, PRD107 (2023)

## Factorization ambiguity

The factorization is not unique!

► Can shuffle terms between between smearing function & internal density.

- Cannot pick out "true" internal density.
- Separation can only be a matter of convention.

## Factorization ambiguity

► The factorization is not unique!

► Can shuffle terms between between smearing function & internal density.

Could move a constant.

- Cannot pick out "true" internal density.
- Separation can only be a matter of convention.

## Factorization ambiguity

The factorization is not unique!

► Can shuffle terms between between smearing function & internal density.

- Could move a constant.
- Could move a Lorentz transform!
- Cannot pick out "true" internal density.
- Separation can only be a matter of convention.

### Frame-dependent densities

Need momentum transfer to obtain form factors:

$$\langle p'|\hat{J}^{\mu}(x)|p\rangle = 2P^{\mu}F(q^2)\,\mathrm{e}^{\mathrm{i}q\cdot x}$$

► For a reference frame *S*:

$$j_{S}^{\mu}(\boldsymbol{b}_{\perp})\equiv\intrac{\mathrm{d}^{2}\boldsymbol{q}_{\perp}}{(2\pi)^{2}}F(-\boldsymbol{q}_{\perp}^{2})\,\mathrm{e}^{-\,\mathrm{i}\boldsymbol{q}_{\perp}\cdot\boldsymbol{b}_{\perp}}$$

is a valid "internal density".

- Can always satisfy factorization formula ...
- ... provided that  $q^+ = 0$ .
- ▶ Proof in AF, in prep.
- ► What's a sensible convention?



$$P = \frac{1}{2} (p + p')$$

Need momentum transfer to obtain form factors:

 $\langle p'|\hat{J}^{\mu}(x)|p
angle = 2P^{\mu}F(q^2)\,\mathrm{e}^{\mathrm{i}q\cdot x}$ 

• *Cannot* have  $|p\rangle \& |p'\rangle$  both at rest.

• **Pseudo-rest frame**: pick frame where system is at rest *on average*.

- And also,  $q^+ = 0$ .
- Two sensible choices:

#### **Drell-Yan frame**

$$\begin{aligned} P^+ &= m \\ \boldsymbol{P}_\perp &= 0 \\ P^- &= m + \frac{\boldsymbol{q}_\perp^2}{4m} \end{aligned}$$

- Definite  $P^+$ , indefinite  $P_z$ .
- Longitudinal velocity not zero!

#### **2D Breit frame**

$$E = m \sqrt{1 + \frac{q_{\perp}^2}{4m^2}}$$
$$P = 0$$

- Indefinite  $P^+$ .
- Longitudinal velocity is zero!

#### Four-current: spin zero

**Drell-Yan frame** vs. **Breit frame**:

$$j_D^+(\boldsymbol{b}_\perp) = j_B^+(\boldsymbol{b}_\perp) = \int \frac{\mathrm{d}^2 \boldsymbol{q}_\perp}{(2\pi)^2} F(-\boldsymbol{q}_\perp^2) \, \mathbf{e}^{-\mathrm{i}\boldsymbol{q}_\perp \cdot \boldsymbol{b}_\perp}$$
$$j_D^\perp(\boldsymbol{b}_\perp) = \boldsymbol{j}_B^\perp(\boldsymbol{b}_\perp) = 0$$
$$j_D^3(\boldsymbol{b}_\perp) = -\int \frac{\mathrm{d}^2 \boldsymbol{q}_\perp}{(2\pi)^2} \frac{\boldsymbol{q}_\perp^2}{8m^2} F(-\boldsymbol{q}_\perp^2) \, \mathbf{e}^{-\mathrm{i}\boldsymbol{q}_\perp \cdot \boldsymbol{b}_\perp}$$
$$j_B^3(\boldsymbol{b}_\perp) = 0$$

- **Drell-Yan frame**: "internal" longitudinal current, due to non-zero velocity.
- **Breit frame**: No longitudinal current, as expected.
- Produce the same *physical* current, but **Breit frame** attributes longitudinal currents to wave packet dispersion.

**III. Spin-half systems** 

► For spinning systems, have **spin indices**:

$$\int \mathrm{d}x^3 \langle \psi | \hat{j}^{\mu}(x) | \psi 
angle = \sum_{\lambda,\lambda'} \int \mathrm{d}^3 oldsymbol{R} \, \mathscr{P}^{\mu}_{\,\,
u}(oldsymbol{R},x^+,\psi,\lambda,\lambda') j^{
u}_{\mathrm{internal}}(oldsymbol{x}_{\perp}-oldsymbol{R}_{\perp},\lambda,\lambda')$$

- Appropriate spin label is the **light front helicity**.
  - ► From + component of Pauli-Lubanski pseudovector:

$$\lambda = \frac{W^+}{P^+} = -\frac{1}{2P^+} \epsilon^{+\nu\rho\sigma} J_{\nu\rho} P_{\sigma} = J_3 - \frac{(\boldsymbol{B}_{\perp} \times \boldsymbol{P}_{\perp}) \cdot \hat{z}}{P^+}$$

- Invariant under light front boosts!
- Equal to spin along z axis in rest frame.
- Equal to helicity in infinite-momentum frame.
- ► Spin label appears in matrix elements:

$$\langle p', \lambda' | \hat{J}^{\mu}(0) | p, \lambda \rangle = \bar{u}(p', \lambda') \left\{ \gamma^{\mu} F_1(q^2) + \frac{\mathrm{i}\sigma^{\mu q}}{2m} F_2(q^2) \right\} u(p, \lambda)$$

- Charge density at fixed  $x^+ = t + z$ .
  - Since we're using light front synchronization.
- Charge density given by  $j^+$ .
- ► Temporal part of continuity equation:

$$\partial_{\mu}j^{\mu} = \frac{\partial j^{+}}{\partial x^{+}} + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$$



Simple formula due to invariance under **Galilean subgroup**:

$$j_{\mathrm{internal}}^{+}(\boldsymbol{b}_{\perp},\hat{\boldsymbol{s}}) = \int \frac{\mathrm{d}^{2}\boldsymbol{q}_{\perp}}{(2\pi)^{2}} \frac{\langle p',\hat{\boldsymbol{s}}|\hat{j}^{+}(0)|p,\hat{\boldsymbol{s}}\rangle}{2p^{+}} \,\mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp}\cdot\boldsymbol{b}_{\perp}}$$

Charge density

Frame-independent result!

Proton charge density

$$j_{\mathrm{internal}}^{+}(\boldsymbol{b}_{\perp}, \hat{\boldsymbol{s}}) = \int \frac{\mathrm{d}^{2}\boldsymbol{q}_{\perp}}{(2\pi)^{2}} \left(F_{1}(-\boldsymbol{q}_{\perp}^{2}) + \frac{(\hat{\boldsymbol{s}} imes \mathrm{i}\boldsymbol{q}_{\perp}) \cdot \hat{z}}{2m} F_{2}(-\boldsymbol{q}_{\perp}^{2})\right) \mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}},$$

#### Longitudinal polarization

**Transverse polarization** 



## Neutron charge density

#### Longitudinal polarization

#### **Transverse polarization**



- ► Longitudinal polarization: negative core & diffuse positive cloud
  - Reproduces Miller, Phys. Rev. Lett. 99 (2007) 112001
- ► Transverse polarization: apparent electric dipole
  - Reproduces Carlson & Vanderhaegen, Phys. Rev. Lett. 100 (2008) 032004 (up to a sign)

## The relativistic wheel

#### Static wheel



Spinning wheel



- Spinning wheel has distortions
- Spokes moving away are **redshifted**.
  - *Appear to* move slower, pile up
- Spokes moving towards are **blueshifted**.
  - Appear to move faster, become sparse
- ► These same distortions are present in the nucleon!
  - The nucleon is a relativistic wheel!
- Also see videos at: https://www.spacetimetravel.org/rad (green wheel is relevant case)

### Electric currents: spin-half

Standard form factor breakdown:

$$\langle p', \lambda' | \hat{J}^{\mu}(0) | p, \lambda \rangle = \bar{u}(p', \lambda') \left\{ \gamma^{\mu} F_1(q^2) + \frac{\mathrm{i}\sigma^{\mu q}}{2m} F_2(q^2) \right\} u(p, \lambda)$$

**Spin-up along** *z* **axis—Drell-Yan frame** vs. **Breit frame**:

$$\begin{aligned} \mathbf{j}_{D}^{\perp}(\mathbf{b}_{\perp}) &= \int \frac{\mathrm{d}^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \frac{\hat{z} \times \mathrm{i} \mathbf{q}_{\perp}}{2m} G_{M}(-\mathbf{q}_{\perp}^{2}) \, \mathrm{e}^{-\mathrm{i} \mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}} \\ \mathbf{j}_{B}^{\perp}(\mathbf{b}_{\perp}) &= \int \frac{\mathrm{d}^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \frac{\hat{z} \times \mathrm{i} \mathbf{q}_{\perp}}{2m\sqrt{1+\tau}} G_{M}(-\mathbf{q}_{\perp}^{2}) \, \mathrm{e}^{-\mathrm{i} \mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}} \\ \mathbf{j}_{D}^{3}(\mathbf{b}_{\perp}) &= \int \frac{\mathrm{d}^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \tau \Big( G_{M}(-\mathbf{q}_{\perp}^{2}) - \frac{1}{2} F_{1}(-\mathbf{q}_{\perp}^{2}) \Big) \, \mathrm{e}^{-\mathrm{i} \mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}} \\ \mathbf{j}_{B}^{3}(\mathbf{b}_{\perp}) &= \int \frac{\mathrm{d}^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \frac{\tau}{1+\tau} G_{M}(-\mathbf{q}_{\perp}^{2}) \, \mathrm{e}^{-\mathrm{i} \mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}} \end{aligned} \right\} \text{ neither vanishes} \end{aligned}$$

where

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$
  $au = \frac{q_\perp}{4m^2}$ 

### Boost artifacts

Induced current



#### **Redshift factors**

- ▶ Boosts leave light front *densities* invariant, but not light front *currents*.
- ▶ Initial & final states **not at rest**— $q_{\perp} \neq 0$ .
- Redshifts from longitudinal boosts in Breit frame.
- Induced currents from Terrell counter-rotations in Drell-Yan frame.
- Boost artifacts don't explain why  $j^3 \neq 0$ —similar cause to charge density modulations?
- Same physics (or artifacts) are present in energy densities!

## IV. The energy-momentum tensor

The energy-momentum tensor

The energy-momentum tensor describes density and flow of energy & momentum.
 Energy density





## Noether's theorems and spacetime distortions

 $x \mapsto x + \xi(x)$ 

• Conserved current from *local* spacetime translations (Noether's second theorem):





- ► Noether's theorems: symmetries imply conservation laws
- Local translation: move spacetime differently everywhere
- ► The **energy-momentum tensor** is a response to these deformations

$$\Delta S_{\rm QCD} = \int \mathrm{d}^4 x \, T^{\mu\nu}_{\rm QCD}(x) \partial_\mu \xi_\nu(x)$$

- Conserved if the action is invariant
- Basically, equivalent to doing a gravitational gauge transform.

## Gravitational form factors

- ► The energy-momentum tensor is parametrized using gravitational form factors
  - ► It's just a name.
  - ► The energy-momentum tensor is the source of gravitation.
  - But we don't really use gravitation to measure them.
- ► Spin-zero example:

$$\langle p'|\hat{T}^{\mu\nu}(0)|p\rangle = 2P^{\mu}P^{\nu}A(q^2) + \frac{1}{2}(q^{\mu}q^{\nu} - q^2g^{\mu\nu})D(q^2) + 2m^2g^{\mu\nu}\bar{c}(q^2)$$

- ►  $A(q^2)$  encodes momentum density
- ► D(q<sup>2</sup>) encodes stress distributions (anisotropic pressures)
- ▶  $\bar{c}(q^2) = 0$  by energy/momentum conservation



## Possible energy densities: spin zero

**Drell-Yan frame** energy density:

$$t^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \left\{ A(-\boldsymbol{q}_{\perp}^2) + \bar{c}(-\boldsymbol{q}_{\perp}^2) + \tau \left( A(-\boldsymbol{q}_{\perp}^2) + D(-\boldsymbol{q}_{\perp}^2) \right) \right\} \mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$

**Breit frame** energy density:

$$t^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \frac{1}{\sqrt{1+\tau}} \left\{ A(-\boldsymbol{q}_{\perp}^2) + \bar{c}(-\boldsymbol{q}_{\perp}^2) + \tau \left( A(-\boldsymbol{q}_{\perp}^2) + D(-\boldsymbol{q}_{\perp}^2) \right) \right\} \mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$

- 2D projection of instant form density!
- See Polyakov & Schweitzer, IJMPA (2018)
- ► Both seem sensible, & differ only by a boost factor.

## Possible energy densities: spin-half

Spin-half form factor breakdown:

$$\begin{split} \langle p', \lambda' | \hat{T}^{\mu\nu}(0) | p, \lambda \rangle &= \bar{u}(p', \lambda') \bigg\{ P^{\mu} P^{\nu} A(q^2) + \frac{\mathrm{i} P^{\{\mu} \sigma^{\nu\}q}}{4m} J(q^2) + \frac{q^{\mu} q^{\nu} - q^2 g^{\mu\nu}}{4m} D(q^2) \\ &+ m g^{\mu\nu} \bar{c}(q^2) + \gamma^{[\mu} P^{\nu]} S(q^2) \bigg\} u(p, \lambda) \end{split}$$

- Drop  $S(q^2)$  (spin form factor) for symmetric EMT.
- Drell-Yan frame energy density (light front helicity state):

$$t^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \left\{ A(\tau) + \bar{c}(\tau) + \tau \left( \frac{1}{2} A(\tau) - J(\tau) + S(\tau) + D(\tau) \right) \right\} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$

- See Lorcé/Moutarde/Trawińsky, EPJC (2019)
- Breit frame energy density (light front helicity state):

$$t^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \frac{1}{\sqrt{1+\tau}} \left\{ A(\tau) + \bar{c}(\tau) + \tau \left( A(\tau) - J(\tau) + S(\tau) + D(\tau) \right) \right\} \mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$

- ► Not 2D projection of instant form density!
- Differs by  $\tau (J(q^2) + S(q^2))$ —similar to  $j^3$  term.

## Artifacts and physics in energy density

Boost artifacts present in both energy densities.

Induced by boost  $|0_{\perp}\rangle \rightarrow |\pm \frac{1}{2}q_{\perp}\rangle$ . Drell-Yan frame energy density (light front helicity state):

$$e^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \left\{ A(\tau) + \bar{c}(\tau) + \tau \left( A(\tau) - \frac{1}{2} A(\tau) - 2J(\tau) + \left( J(\tau) + S(\tau) \right) + D(\tau) \right) \right\} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$

Breit frame energy density (light front helicity state):

$$t^{+0}(\boldsymbol{b}_{\perp}) = m \int \frac{\mathrm{d}^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \frac{1}{\sqrt{1+\tau}} \left\{ A(\tau) + \bar{c}(\tau) + \tau \left( A(\tau) - 2J(\tau) + \left( J(\tau) + S(\tau) \right) + D(\tau) \right) \right\} \mathrm{e}^{-\mathrm{i}\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}$$
Redshift Relativistic optical effect

- Relativistic optical effects (not boost artifacts) present, too.
  - Similar to non-zero  $i^3$ .
  - Related to relativistic wheel—consequence of fixed  $x^+$ .
  - Formally related to Melosh rotation; see Chen & Lorcé, PRD (2022)

## Spin-half energy density: numerical results



- **Energy**:  $P^0$  generates  $x^+$  evolution *at fixed*  $x^3$  (see AF & Miller, PRD (2023)).
- ► Using Mamo-Zahed model for GFFs.
  - Plus Lorcé/Moutarde/Trawińsky, EPJC (2019) for  $S(q^2)$ .
- Results all look qualitatively similar.

## Spin-half $P^-$ density: numerical results



► *P*<sup>-</sup> often considered the "light front energy."

- Is  $x^+$  translation generator at fixed  $x^-$ .
- (Though  $P^0$  generates  $x^+$  translations at fixed  $x^3$ —see AF & Miller, PRD (2023).)
- Asym. Drell-Yan density echoes Lorcé/Moutarde/Trawińsky, EPJC (2019)

► The light front allows exact factorization of physical densities:

**Conclusions & summary** 

- Multiple factorizations are possible—matter of choice/convention.
  - Drell-Yan frame & Breit frame both sensible.
- Strange optical effects in spinning targets.
  - Angular modulations—proton is a relativistic wheel!
  - Mysterious longitudinal current.

# Thank you for your time!