Transverse Momentum

Distributions from Lattice QCD

SoLID Opportunities and Challenges of Nuclear Physics

 at the Luminosity FrontierArgonne National Laboratory, Lemont, IL, USA

$$
\text { June 18, } 2024
$$

YONG ZHAO

Outline

- Overview of TMD physics
- Large-Momentum Effective Theory (LaMET)
- Theoretical framework for lattice calculation
- Collins-Soper kernel
- Soft function and TMD PDF
- New approach without Wilson lines
- Coulomb-gauge quasi-TMD
- Exploratory calculation of the Collins-Soper kernel
- Preliminary results of helicity TMD PDF
- Summary

3D imaging of the proton

NNPDF, EPJ C77 (2017) $\int d^{2} \vec{b}_{T}$
Generalized parton distributions (GPDs)

Wigner distributions/Generalized TMDs

$$
W\left(x, \vec{k}_{T}, \vec{b}_{T}\right)
$$

W. Armstrong et al., arXiv: 1708.00888.

TMDs of different spin structures

TMD Handbook, TMD Topical Collaboration, arXiv: 2304.03302.

TMDs from global analyses

e.g., semi-inclusive DIS: $\quad l+p \longrightarrow l+h\left(P_{h}\right)+X, \quad P_{h T} \ll Q$

$$
\begin{aligned}
& \frac{d \sigma^{W}}{d x d y d z_{h} d^{2} \mathbf{P}_{h T}} \sim \int d^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \cdot \mathbf{P}_{h T} / z} \\
& \quad \times f_{i / p}\left(x, \mathbf{b}_{T}, Q, Q^{2}\right) D_{h / i}\left(z_{h}, \mathbf{b}_{T}, Q, Q^{2}\right)
\end{aligned}
$$

$$
f_{i / p}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=f_{i / p}^{\mathrm{pert}}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right)
$$

$$
\times\left(\frac{\zeta}{Q_{0}^{2}}\right)^{g_{K}\left(b_{T}\right) / 2} f_{i / p}^{\mathrm{NP}}\left(x, b_{T}\right) \longrightarrow \begin{gathered}
\text { Collins-Soper } \\
\text { (Non-perturba } \\
\text { Intrinsic TMD }
\end{gathered}
$$

$$
Q_{0} \sim 1 \mathrm{GeV}
$$

Non-perturbative when $b_{T} \sim 1 / \Lambda_{\mathrm{QCD}}$!

TMDs from global analyses

- Kinematic coverage of Drell-Yan and SIDIS experiments

MAP Collaboration, JHEP 10 (2022), arXiv: 2405.13833.
A wide range of $\left(x, Q^{2}\right)$ is essential for extracting the intrinsic TMDs while sufficiently suppressing the power corrections.

Outline

- Overview of TMD physics
- Large-Momentum Effective Theory (LaMET)
- Theoretical framework for lattice calculation
- Collins-Soper kernel
- Soft function and TMD PDF
- New approach without Wilson lines
- Coulomb-gauge quasi-TMD
- Exploratory calculation of the Collins-Soper kernel
- Preliminary results of helicity TMD PDF
- Summary

Simulating partons on the Euclidean lattice?

PDFs can be defined from light-cone correlations

Time-dependence makes it impossible to calculate the PDFs directly on the Euclidean lattice.

Large-Momentum Effective Theory (LaMET)

Revisit Feynman's parton picture in the infinite momentum frame

Simulating $\langle P=\infty| O(t=0)|P=\infty\rangle$?

$$
P \ll \frac{2 \pi}{a}!
$$

Nevertheless, it is possible to simulate a proton at large P :

$$
z+c t=0, \quad z-c t \neq 0
$$

$$
\text { X. Ji, PRL } 110 \text { (2013) }
$$

$$
t=0, \quad z \neq 0
$$

Transverse Momentum Distributions (TMDs)

- Beam function:
- Soft function :
$n_{b}^{2}=0$
Rapidity : $\quad y_{B}=\frac{1}{2} \ln \left|\frac{n_{b}^{+}}{n_{\bar{b}}}\right|=-\infty$

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

$$
\text { Collins-Soper scale: } \zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}
$$

Rapidity divergence regulator

Transverse Momentum Distributions (TMDs)

- Beam function:
- Soft function :

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{U V} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Collins-Soper scale: $\zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}$

Rapidity divergence regulator

TMDs from LaMET

- Beam function (Collins's scheme): • Quasi beam function :

Spacelike but close-to-light-cone $\left(y_{B} \rightarrow-\infty\right)$ Wilson lines, not calculable on the lattice :

Equal-time Wilson lines, directly calculable on the lattice:

Ebert, Schindler, Stewart and YZ, JHEP 04 (2022).

Soft factor

Light-meson form factor:

$$
\begin{aligned}
& F\left(b_{T}, P^{z}\right)=\langle\pi(-P)| j_{1}\left(b_{T}\right) j_{2}(0)|\pi(P)\rangle \\
& \stackrel{P^{z} \gg m_{N}}{=} S_{r}\left(b_{T}, \mu\right) \int d x d x^{\prime} H\left(x, x^{\prime}, \mu\right) \\
& \times \Phi^{\dagger}\left(x, b_{T}, P^{z}, \mu\right) \Phi\left(x^{\prime}, b_{T}, P^{z}, \mu\right)
\end{aligned}
$$

$\Phi\left(x, b_{T}, P^{z}, \mu\right)$: quasi-TMD wave function

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105 (2022);
- Deng, Wang and Zeng, JHEP 09 (2022).

Factorization formula for the quasi-TMDs

$$
\frac{\tilde{f}_{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{\sqrt{S_{r}\left(b_{T}, \mu\right)}}=C\left(\mu, x \tilde{P}^{z}\right) \exp \left[\frac{1}{2} \gamma_{\zeta}\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Factorization formula for the quasi-TMDs

$$
\underline{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}
$$

$$
\exp \left[\frac{1}{2} \gamma_{\zeta}\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

$$
\times f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)
$$

* Collins-Soper kernel;

$$
\gamma_{\zeta}\left(\mu, b_{T}\right)=\frac{d}{d \ln \tilde{P}^{z}} \ln \frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{C\left(\mu, x \tilde{P}^{z}\right)}
$$

* Flavor separation; $\quad \frac{f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}{f_{j / p}^{[/]}\left(x, \mathbf{b}_{T}\right)}=\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}\right)}{\tilde{f}_{j / p}^{\text {naive }\left[s^{\prime}\right]}\left(x, \mathbf{b}_{T}\right)}$
* Spin-dependence, e.g., Sivers function (single-spin asymmetry);
* Full TMD kinematic dependence.
* Twist-3 PDFs from small b_{T} expansion of TMDs. Ji, Liu, Schä́er and Yuan, PRD 103 (2021).
* Higher-twist TMDs. Rodini and Vladimirov, JHEP 08 (2022).

State-of-the-art determination of the Collins-Soper kernel

$$
\gamma_{\zeta}\left(\mu, b_{T}\right)=\frac{d}{d \ln \tilde{P}^{z}} \ln \frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{C\left(\mu, x \tilde{P}^{z}\right)}
$$

- Physical quark masses, large Lorentz boosts
- Continuum limit with $a=0.15,0.12,0.09 \mathrm{fm}$
- Controlled renormalization and Fourier transform
- Next-to-next-to-leading logarithmic (NNLL) order

- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, Phys.Rev.D 108 (2023);
- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, Phys.Rev.Lett. 132 (2024).

State-of-the-art determination of the Collins-Soper kernel

$$
\gamma_{\zeta}\left(\mu, b_{T}\right)=\frac{d}{d \ln \tilde{P}^{z}} \ln \frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{C\left(\mu, x \tilde{P}^{z}\right)}
$$

- Physical quark masses, large Lorentz boosts
- Continuum limit with $a=0.15,0.12,0.09 \mathrm{fm}$
- Controlled renormalization and Fourier transform
- Next-to-next-to-leading logarithmic (NNLL) order

- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, Phys.Rev.D 108 (2023);
- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, Phys.Rev.Lett. 132 (2024).

Systematics in lattice calculation

Staple-shaped Wilson line

$$
\eta \gg\left\{b^{z}, b_{T}\right\}, x P^{z} \gg 1 / b_{T}
$$

- A large staple (gauge link) induces large statistical noises, which becomes worse at larger b_{T};
- Complex operator mixings induced by the staple geometry; $\quad O_{\Gamma}=\sum_{\Gamma^{\prime}} Z_{\Gamma \Gamma} O_{\Gamma^{\prime}}$
- Additional power correction of order b^{z} / b_{T}, or equivalently $1 /\left(x P^{z} b_{T}\right)$, from the staple self energy, which has not been handled by renormalization so far.

Lattice calculation of the soft function at NLO

M.-H. Chu, et al. (LPC), JHEP 08 (2023).

$$
\begin{gathered}
a=0.121 \mathrm{fm} \\
m_{\pi}=670 \mathrm{MeV} \\
P_{\max }^{z}=2.58 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{gathered}
a=0.098 \mathrm{fm} \\
m_{\pi}=662 \mathrm{MeV} \\
P_{\max }^{z}=2.64 \mathrm{GeV}
\end{gathered}
$$

$\left(x, b_{T}\right)$ dependence of the unpolarized proton TMD

J.-C. He, M.-H. Chu, J. Hua et al., (LPC), arXiv: 2211.02340.

$b_{\perp}=0.6 \mathrm{fm}=(0.33 \mathrm{GeV})^{-1}$

\square	This work
\cdots	PV17
\cdots	MAPTMD22
$-\cdots$	SV19
$-\cdots$	BHLSVZ22

$$
\begin{aligned}
a & =0.12 \mathrm{fm} \\
m_{\pi} & =\{310,220\} \mathrm{MeV} \\
P_{\text {max }}^{z} & =2.58 \mathrm{GeV}
\end{aligned}
$$

SV19: Scimemi and Vladimirov, JHEP 06 (2020)
Pavia19: Bacchetta et al., JHEP 07 (2020).
MAPTMD22: Bacchetta et al., JHEP 10 (2022).
BHLSVZ22: Bury et al., JHEP 10 (2022).

Outline

- Overview of TMD physics
- Large-Momentum Effective Theory (LaMET)
- Theoretical framework for lattice calculation
- Collins-Soper kernel
- Soft function and TMD PDF
- New approach without Wilson lines
- Coulomb-gauge quasi-TMD
- Exploratory calculation of the Collins-Soper kernel
- Preliminary results of helicity TMD PDF
- Summary

Universality in LaMET

Quasi-TMD in the Coulomb gauge

$$
\begin{aligned}
\tilde{h}(\vec{b}, \vec{P}, \mu) & =\left.\frac{1}{2 P^{t}}\langle P| \bar{\psi}(\vec{b}) \gamma^{t} \psi(0)\right|_{\nabla \cdot \mathbf{A}=0}|P\rangle \\
\tilde{f}\left(x, b_{T}, P^{z}, \mu\right) & =P^{z} \int_{-\infty}^{\infty} \frac{d b^{z}}{2 \pi} e^{i x P^{z} b^{z}} \tilde{h}\left(b^{z}, b_{T}, P^{z}, \mu\right)
\end{aligned}
$$

Quasi-PDF

X. Gao, W.-Y. Liu and YZ, Phys.Rev.D 109 (2024)

Quasi-TMD

Quasi-TMD in the Coulomb gauge

$$
\begin{gathered}
\tilde{h}(\vec{b}, \vec{P}, \mu)=\left.\frac{1}{2 P^{t}}\langle P| \bar{\psi}(\vec{b}) \gamma^{t} \psi(0)\right|_{\nabla \cdot \mathrm{A}=0}|P\rangle \\
\tilde{B}\left(x, b_{T}, P^{z}, \mu\right)=P^{z} \int_{-\infty}^{\infty} \frac{d b^{z}}{2 \pi} e^{i x P^{z} b^{z}} \tilde{h}\left(b^{z}, b_{T}, P^{z}, \mu\right)
\end{gathered}
$$

TMD

Parton distributions probe the correlation of energetic quarks and gluons dressed in the gauge background, which can be formulated by fixing a physical gauge condition.

$$
G(A)=0, \quad G(A)=A^{0}, A^{z}, \nabla \cdot \mathbf{A}, A^{+}
$$

Factorization formula

$$
\frac{\tilde{B}\left(x, b_{\perp}, \mu, P^{z}\right)}{\tilde{S}_{C}\left(b_{\perp}, \mu, y_{n}\right)}=\left|C\left(x P^{+} / \mu\right)\right|^{2} f\left(x, b_{\perp}, \mu, \zeta\right)+O\left(\lambda^{2}\right)
$$

Verified at 1-loop!

Collins-Soper scale

$$
\zeta=2\left(x P^{+}\right)^{2} e^{-2 y_{n}}
$$

Quasi soft factor

$$
\tilde{S}_{C}\left(b_{\perp}, \mu, y_{n}\right) \equiv \frac{S_{C}^{0}\left(b_{\perp}, \ldots\right)}{S\left(b_{\perp}, \ldots, y_{n}\right)}
$$

Soft function for physical TMD PDF

Coulomb-gauge zero-
bin contribution

$$
S_{C}^{0}=\frac{1}{N_{c}}\langle 0| T\left[S_{n}^{\dagger}\left(b_{\perp}\right)\left(U_{C}^{S}\right)^{\dagger}\left(b_{\perp}\right) U_{C}^{s}(0) S_{n}(0)\right]|0\rangle
$$

Calculation from the same light-meson form factor:

$$
\begin{aligned}
& F\left(b_{\perp}, P^{z}\right)=\langle\pi(-P)| j_{1}\left(b_{\perp}\right) j_{2}(0)|\pi(P)\rangle \\
& \quad=\int d x_{1} d x_{2} H_{F}\left(x_{1}, x_{2}, P^{z}, \mu\right) \frac{\phi\left(x_{1}, b_{\perp}, \mu, P^{z}\right)}{\tilde{S}_{C}\left(b_{\perp}, \mu, 0\right)} \frac{\left.\phi\left(x_{2}, b_{\perp}, \mu, P^{z}\right)\right]}{\tilde{S}_{C}\left(b_{\perp}, \mu, 0\right)}
\end{aligned}
$$

$\phi\left(x, b_{T}, \mu, P^{z}\right)$:
Coulomb gauge quasi-
TMD wave function

$$
\phi^{*}=\phi
$$

Hard kernel: known at 1-loop

Advantages

- Significantly improved statistical precision, access to larger b_{T};

- Absence of linear power divergence and multiplicative renormalization;
- Access to larger off-axis momenta.

$$
\vec{P}=\left(0, P^{z}, P^{z}\right), \quad \vec{b}=\left(b_{\perp}, b^{z}, b^{z}\right)
$$

D. Bollweg, X. Gao, S. Mukherjee and YZ, Phys.Lett.B 852 (2024)

X. Gao, W.-Y. Liu and YZ, Phys.Rev.D 109 (2024)

Exploratory calculation of the Collins-Soper kernel

- $\mathrm{Nf}=2+1$ (chiral) domain-wall fermion configurations
- $a=0.0836 \mathrm{fm}, m_{\pi}=140 \mathrm{MeV}, P^{z_{\max }}=1.85 \mathrm{GeV}$.

Agreement with earlier method and recent global fits

D. Bollweg, X. Gao, S. Mukherjee and YZ, Phys.Lett.B 852 (2024)

Accessibility to deeper non-perturbative region!

Spin-dependent proton TMDs

Preliminary results with the Coulomb-gauge method are encouraging:
u-d, unpolarized

u-d, helicity

Image courtesy of Jinchen He and Xiang Gao.

- $N f=2+1$ HISQ fermion configurations with Wilson Clover fermion
- $a=0.06 \mathrm{fm}, m_{\pi}=300 \mathrm{MeV}, P_{\text {max }}=3.0 \mathrm{GeV}$.

Spin-dependent proton TMDs

No mixing between different spin structures or flavors:

$$
\begin{aligned}
\frac{f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}{f_{j / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}= & \frac{\tilde{B}_{i / p}^{[s]}\left(x, \mathbf{b}_{T}, P^{z}\right)}{\tilde{B}_{j / p}^{\left[s^{\prime}\right]}\left(x, \mathbf{b}_{T}, P^{z}\right)} \\
& \frac{\Delta u\left(x, b_{T}\right)-\Delta d\left(x, b_{T}\right)}{u\left(x, b_{T}\right)-d\left(x, b_{T}\right)}
\end{aligned}
$$

$\frac{\Delta u\left(x, b_{T}\right)-\Delta d\left(x, b_{T}\right)}{u\left(x, b_{T}\right)-d\left(x, b_{T}\right)}$
heli_over_unpol_P5_bmix

The \mathbf{b}^{\top} dependence is very weak. Implication of flavor independence of intrinsic non-perturbative part?

The Pz dependence appears saturated at moderate x .

Spin-dependent proton TMDs

Comparison with collinear PDF (nnpdf) ratio: $\frac{\Delta u(x)-\Delta d(x)}{u(x)-d(x)}$

- Consistent with the PDF ratio within the moderate x region;
- The helicity TMD PDF is about a factor of 1.0 to 1.4 to the unpolarized case.

Summary

- The LaMET framework has enabled lattice QCD calculation of the TMDs;
- A state-of-the-art lattice calculation has been carried out for the lattice calculation of the Collins-Soper kernel, which has achieved sufficient precision to differentiate phenomenological fits;
- The CG approach does not require the use of Wilson lines, which can significantly reduce the statistical error, simplify the renormalization and access higher off-axis momenta;
- Exploratory calculation of the Collins-Soper kernel with the CG approach shows efficiency of the method. Preliminary results of the proton helicity TMDs have achieved comparable statistical precision as global fits of the PDF.
- The new approach has the potential to enable precise lattice calculation of TMD physics in the deep non-perturbative region.

Gauge fixing and Gribov copies

- Find the gauge transformation Ω of link variables $U_{i}(t, \vec{x})$ that minimizes:

$$
F\left[U^{\Omega}\right]=\frac{1}{9 V} \sum_{\vec{x}} \sum_{i=1,2,3}\left[- \text { re } \operatorname{Tr} U_{i}^{\Omega}(t, \vec{x})\right]
$$

- Gribov copies correspond to different local extrema.
- Gauge-variant correlations may differ in different Gribov copies.
- However, the copies should contribute to the statistical noise if the algorithm randomly select the copies.

Test of the Gribov copies effect
For each configuration, obtain n daughter configurations that satisfy the criteria.
"First it": select the first daughter configuration.
"Smallest f": select the configuration with the lowest functional value.

Measure the pion quasi-PDF matrix element.

J. He et al., work in preparation.

Transverse link and T-odd TMDs

- T-odd light-cone TMD:
P.V. prescription = anti-symmetric boundary condition

$$
A_{\perp}^{\mu}\left(\infty^{-}\right)=-A_{\perp}^{\mu}\left(-\infty^{-}\right)
$$

Need a transverse link to define the T-odd TMDs

$$
\text { Contribution in a Feynman diagram: } \frac{e^{-i \infty^{-} k^{+}}}{\left[k^{+}\right]_{\mathrm{pv}}}=-i \pi \delta\left(k^{+}\right)
$$

- Coulomb-gauge quasi-TMD. •Ji and Yuan, PLB 543 (2002)
- Belitsky, Ji and Yuan, NPB 656 (2003)

$$
\tilde{h}(\vec{b}, \vec{P}, \mu, \pm)=\left.\frac{1}{2 P^{t}}\langle P| \bar{\psi}(\vec{b}) \mathscr{W}_{\perp}\left(\pm \infty \hat{z} ; b_{\perp}, 0_{\perp}\right) \gamma^{t} \psi(0)\right|_{\nabla \cdot \mathbf{A}=0}|P\rangle
$$

Quasi-TMD with a transverse link

Gluon TMDs

- Factorization formula can be derived using SCET as well.
- No linear power divergence.
- Mixing with gauge-variant operators. However, the number of mixings is finite under the constraint of $\mathrm{SO}(3)$ symmetry.
- Could be more susceptible to the Gribov noise, but it may still easily beat the statistical precision achieved with Wilson line operators.

High-order corrections

- Known to be difficult due to non-covariant nature, but it is just one scale in massless integrals.
- No complete 2-loop result so far, even for the quark wave function renormalization.
- Linear renormalon in the matching coefficient.
- Corresponds to a linear power correction of order $\Lambda_{\mathrm{QCD}} / P^{z}$;
- However, strength of the renormalon is not easy to estimate. An NNLO calculation can offer a lot of insight.
- Lattice calculation of the Collins-Soper kernel suggests that the result converges in P^{z} quite well.

D. Bollweg, X. Gao, S. Mukherjee and YZ, Phys.Lett.B 852 (2024)

