

-RECENT PROGRESS ON COMPASS TMD PROGRAMME

Riccardo Longo On behalf of the COMPASS Collaboration June 18th 2024

SoLID Opportunities and Challenges of Nuclear Physics at the Luminosity Frontier Workshop

Argonne National Laboratory

UNIVERSITY OF URBANA-CHAMPAIGN

RECENT COMPASS SIDIS RESULTS

FUTURE

- Fixed target experiment
- CERN SPS North-Area (**M2 beam-line**)
- First data taking in 2002
- 28 institutions from 14 countries
- Broad physics program

COMPASS-I (2002 - 2011)

- Hadron Spectroscopy
- Nucleon spin structure (L/T p/D Targets)

Riccardo Longo

- Drell-Yan (2015, 2018)
- DVCS + Unpolarized SIDIS(2016-2017)
- Transversely polarized SIDIS on D target (2022)

COMPASS-II (2012 - 2022)

• Primakoff + DVCS pilot run (2012)

COMPASS **ANALYSIS** PHASE (Started in 2023)

Generalized Parton **Distributions** (GPDs)

COMPASS-I (2002 - 2011)

- Hadron Spectroscopy
- Nucleon spin structure (L/T p/D Targets)

Riccardo Longo

- Drell-Yan (2015, 2018)
- DVCS + Unpolarized SIDIS(2016-2017)
- Transversely polarized SIDIS on D target (2022)

Transverse Momentum Dependent **PDFs (TMDs)** THIS TALK

COMPASS-II (2012 - 2022)

• Primakoff + DVCS pilot run (2012)

Generalized Parton Distributions (GPDs)

COMPASS-I (2002 - 2011)

- Hadron Spectroscopy
- Nucleon spin structure (L/T p/D Targets)

Riccardo Longo

• Primakoff + DVCS pilot run (2012)

- Drell-Yan (2015, 2018)
- DVCS + Unpolarized SIDIS(2016-2017)

Transverse Momentum Dependent **PDFs (TMDs)** THIS TALK

COMPASS-II (2012 - 2022)

Transversely polarized SIDIS on D target (2022)

COMPASS **ANALYSIS** PHASE (Started in 2023)

		Nucleon Polarisation					
		\mathbf{U}	\mathbf{L}	T			
tion	U	$\int_{1}^{q} (x, \mathbf{k_T^2})$ Number Density		$f_{1T}^{q\perp}(x, \mathbf{k_T^2})$ Sivers			
k Polarisa	L		$g_1^q(x, \mathbf{k_T^2})$ Helicity	$\begin{array}{c} & & & \\ & & & \\ &$			
Quarl	\mathbf{T}	$h_1^{q\perp}(x, \mathbf{k_T^2})$ Boer-Mulders	$h_{1L}^{q\perp}(x, \mathbf{k_T^2})$ Worm-Gear L	$h_{1T}^{q}(x, \mathbf{k_{T}^{2}})$ Transversity $h_{1T}^{q\perp}(x, \mathbf{k_{T}^{2}})$ $h_{1T}^{q\perp}(x, \mathbf{k_{T}^{2}})$ Pretzelosity			
	Nucleoi	n Nucleon spin	• quark • q	uark 🖊 k _T			
cardo Longo (Tuesday Morning)							

DEPENDENT PDFS

In the leading order QCD parton model, nucleon spin-

TMD PDFs can be accessed through measurement of

		Nucleon Polarisation					
		\mathbf{U}	\mathbf{L}	T			
tion	U	$f_1^q(x, \mathbf{k_T^2})$ Number Density		$f_{1T}^{q\perp}(x, \mathbf{k_T^2})$ Sivers			
k Polarisa	L		$g_1^q(x, \mathbf{k_T^2})$ Helicity	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ g_{1T}^q(x, \mathbf{k_T^2}) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $			
Quar	T	$h_1^{q\perp}(x, \mathbf{k_T^2})$ Boer-Mulders	$h_{1L}^{q\perp}(x, \mathbf{k_T^2})$ Worm-Gear L	$h_{1T}^{q}(x, \mathbf{k_{T}^{2}})$ Transversity $h_{1T}^{q\perp}(x, \mathbf{k_{T}^{2}})$ Pretzelosity			
Nucleon Nucleon quark $\mathbf{k_T}$							
cardo Longo (Tuesday Morning)							

VERSE MOMENTUM DEPENDENT PDFs@Compass

BOTH PROCESSES MEASURED AT COMPASS!

EXPERIMENTAL ACCESS TO ALL TMD PDFS VIA DIFFERENT CHANNELS

- Different targets available:
 - + Polarized Solid state NH₃ or ⁶LiD
 - + Unpolarized Liquid H₂
 - Unpolarized solid-state nuclear targets (e.g. Ni, W, Pb)

- 400 GeV p primary SPS beam
 impinging on Be production target
 - + 190 GeV secondary hadron beams
 - + h^- beam: 97% π^- , 2% K^- , 1% \bar{p}
 - + h^+ beam: 75% π^+ , 24% p, 2% K^+
 - + 160 GeV tertiary μ^{\pm} beams longitudinally polarized

Riccardo Longo

HIGH VERSATILITY!

Two-stage forward spectrometer

- +Large Angle Spectrometer (LAS), Θ up to ±180 mrad
- +Small Angle Spectrometer (SAS), Θ up to ±30 mrad
- High tracking power: ~350 planes (GEMs, SciFis, DCs, MWPCs, MicroMegas, Straws);
- PID via RICH, Calorimetric measurements, Muon Walls;

Riccardo Longo

SIDIS CROSS-SECTION

$$\frac{d\sigma}{dxdydzdP_{T}^{2}d\phi_{h}d\phi_{s}} = \left[\frac{\alpha}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\phi_{s}}\cos\phi_{h}+\varepsilon A_{UU}^{\cos2\phi_{s}}\cos2\phi_{h}$$

$$+2\sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\sin\phi_{s}}\sin\phi_{h}$$

$$+S_{I}\left[\sqrt{2\varepsilon(1+\varepsilon)}A_{UL}^{\sin\phi_{s}}\sin\phi_{h}+\varepsilon A_{UL}^{\sin2\phi_{s}}\sin2\phi_{h}\right]$$

$$+S_{I}\lambda\left[\sqrt{1-\varepsilon^{2}}A_{IL}+\sqrt{2\varepsilon(1-\varepsilon)}A_{LL}^{\cos\phi_{s}}\cos\phi_{h}\right]$$

$$+S_{T}\left\{A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(\phi_{h}-\phi_{h})$$

$$+S_{T}\left\{A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(\phi_{h}-\phi_{h})$$

$$+S_{T}\left\{\frac{A_{UT}^{\sin(\phi_{h}-\phi_{h})}\sin(\phi_{h}-\phi_{h})}{+(2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_{h}}\sin\phi_{h}}\right]$$

$$+S_{T}\lambda\left[\sqrt{1-\varepsilon^{2}}A_{UT}^{\cos\phi_{h}-\phi_{h}}\cos(\phi_{h}-\phi_{h})\right]$$

$$Twist-2$$

$$\frac{1}{1-y+1}$$

Each azimuthal modulation of the SIDIS crosssection gives access to a specific convolution of a TMD PDF of the target proton and a TMD fragmentation function

 $A_{X,Y}^{\omega(\phi_h,\phi_S)} \propto PDF_{\text{Target}} \otimes FF \ (+\dots)$

ALL ASYMMETRIES MEASURED BY COMPASS!

$$\frac{d\sigma}{dxdydzdP_T^2d\phi_h d\phi_S} = \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\frac{\gamma^2}{2x}\right)$$

$$A_{UU}^{\cos\phi_h} \leftrightarrow F_{UU}^{\cos\phi_h} = \frac{2M}{Q} C \left\{ -\frac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M_h} \left[xhH_{1q}^{\perp h} + \frac{M_h}{M} f_1^q \frac{D_q^{\perp h}}{z} \right] - \frac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M} \right\}$$

- Complex structure function different contributions from twist-2 and twist-3 functions

ARIZED MEASUREMENTS: CAHN EFFECT

• Several corrections: (acceptance effects, diffractively produced vector mesons, radiative corrections, etc...)

$$\frac{d\sigma}{dxdydzdP_T^2d\phi_h d\phi_S} = \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon\right)$$

$$A_{UU}^{\cos 2\phi_h} \propto -h_1^{\perp q} \otimes H_{1q}^{\perp h} + \left(\frac{M}{Q}\right)^2 f_1^q \otimes D_{1q}^h + \dots$$

COLLINS-LIKE BEHAVIOR (hth MIRROR SYMMETRY)?

EMENTS: BOER-MULDERS EFFECT

- $\varepsilon F_{UU,L}$ $\times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \dots)$
 - Receives contribution from Boer-Mulders effect and from twist-4 Cahn effect

ZED MEASUREMENTS

$$[\mathbf{F}_{UU,L})$$

$$[\mathbf{Twist-2}] \quad \mathbf{Twist-3}$$

$$\begin{bmatrix} A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^{h} \\ A_{UT}^{\sin(\phi_h + \phi_s)} \propto h_{1}^{q} \otimes H_{1q}^{\perp h} \\ A_{UT}^{\sin(\phi_h + \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \\ A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \\ A_{UT}^{\sin(2\phi_h - \phi_s)} \propto Q^{-1} \left(h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + A_{UT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^{q} \otimes D_{1q}^{h} \\ A_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^{q} \otimes D_{1q}^{h} \\ A_{LT}^{\cos(2\phi_h - \phi_s)} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ...\right) \\ A_{LT}^{\cos(2\phi_h - \phi_s)} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ...\right)$$

$$\lim_{MT} \phi_{RS} = \frac{|\mathbf{p}_1 - \mathbf{p}_2|}{2M_{hh}} \frac{\sum_q e_q^2 h_1^q(x) H_{1,q}^{\perp}(z, M_{hh}^2, \cos \theta)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_{hh}^2, \cos \theta)}$$

IDIS POLARIZED MEASURE

Measured by COMPASS on p/D targets in SIDIS

ED MEASUREMENTS: SIVERS

JARZED MEASUREMENTS: SIVERS EFFECT

SIDIS POLARIZED MEASUREMENTS: SIVERS EFFECT

- Discrepancy COMPASS/HERMES for Sivers effect
- Q² evolution effects?
- Test of sign change prediction?

COMPASS SIDIS - DRELL-YAN BRIDGE

Leading order QCD parton model expression of the Transversely Polarized DY cross-section

$$\frac{d\sigma^{LO}}{d\Omega d^4 q} \propto \begin{cases} 1 + D_{[\sin^2\theta]} \cos(2\varphi_{CS}) A_U^{\cos 2\varphi_{CS}} \\ + S_T \begin{bmatrix} \sin\varphi_S A_T^{\sin\varphi_S} \\ + D_{[\sin^2\theta]} \begin{pmatrix} \sin(2\varphi_{CS} + \varphi_S) A_T^{\sin(2\varphi_{CS} + \varphi_S)} \\ \sin(2\varphi_{CS} - \varphi_S) A_T^{\sin(2\varphi_{CS} - \varphi_S)} \end{bmatrix} \end{cases}$$

Riccardo Longo

Pion on transversely polarized nucleon Drell-Yan process @ COMPASS

Leading order QCD parton model expression of the Transversely Polarized DY cross-section

$$\frac{d\sigma^{LO}}{d\Omega d^4 q} \propto \begin{cases} 1 + D_{[\sin^2 \theta]} \cos(2\varphi_{CS}) A_U^{\cos 2\varphi_{CS}} \\ + S_T \begin{bmatrix} \sin \varphi_S A_T^{\sin \varphi_S} \\ + D_{[\sin^2 \theta]} \begin{pmatrix} \sin(2\varphi_{CS} + \varphi_S) A_T^{\sin(\varphi_S)} \\ \sin(2\varphi_{CS} - \varphi_S) A_T^{\sin(\varphi_S)} \end{pmatrix} \end{cases}$$

 $A_{DY} \propto PDF_{\pi} \otimes PDF_{p}$

1 Unpolarized
$$\begin{split} A_U^{\cos(2\varphi_{CS})} &\propto h_{1,\pi}^{\perp,q} \otimes h_{1,p}^{\perp q} \\ A_T^{\sin\varphi_S} &\propto f_{1,\pi}^q \otimes f_{1T,p}^{\perp q} \\ A_T^{\sin(2\varphi_{CS}+\varphi_S)} &\propto h_{1,\pi}^{\perp q} \otimes h_{1T,p}^{\perp q} \end{split}$$
Asymmetry 3 Single Spin Asymmetries $A_T^{\sin(2\varphi_{CS}-\varphi_S)} \propto h_{1,\pi}^{\perp q} \otimes h_{1,p}^q$

Riccardo Longo

Pion on transversely polarized nucleon Drell-Yan process @ COMPASS

$$\pi^{-} + p^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X$$
2015, 2018
$$H_{\pi}(P_{\pi})$$

$$\mu^{-}(q)$$

$$q(k_{N})$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

$$\mu^{+}(q)$$

Single polarized SIDIS cross section, Twist-2 only

$$\frac{d\sigma^{LO}}{dxdydzdp_T^2d\varphi_hd\psi} \propto \begin{cases} 1 + \cos(2\phi_h)\varepsilon A_{UU}^{\cos(2\phi_h)} \\ \sin(\phi_h - \phi_S)A_{UT}^{\sin(\phi_h - \phi_S)} + \sin(\phi_h + \phi_S)\varepsilon A_{UT}^{\sin(\phi_h - \phi_S)} \\ + \sin(3\phi_h - \phi_S)\varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \\ + \sin(3\phi_h - \phi_S)\varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \end{cases}$$

 $A_{SIDIS} \propto PDF_p \otimes FF$

1 Unpolarized Asymmetry

3 Single Spin Asymmetries

Riccardo Longo

$$A_{UU}^{\cos(2\phi_h)} \propto h_{1,p}^{\perp q} \otimes H_{1,p}^{\leq}$$

$$\begin{cases}
A_{UT}^{\sin(\phi_h - \phi_S)} \propto f_{1T,p}^{\perp q} \otimes L \\
A_{UT}^{\sin(\phi_h + \phi_S)} \propto h_{1,p}^q \otimes H_{1,p}^q \otimes H_{1,p}^q & H_{1$$

SIDIS on transversely polarized p @ COMPASS $\mu + p^{\uparrow} \to \mu' + h + X$ 2007, 2010

MPASS EXPERIMENTAL ACCESS TO IMUS

SIDIS on transversely polarized nucleons

UNIVERSALITY IN TMD-QCD PARTON MODEL APPROACH

Transversity and **Pretzelosity** TMD PDFs "genuinely" universal (**no sign change** between SIDIS and DY) **Boer Mulders** and **Sivers** TMD PDFs "conditionally" universal (**sign change** between SIDIS and DY)

 $h_{1,p}^{q}|_{SIDIS} = h_{1,p}^{q}|_{DY}$ $h_{1T,p}^{\perp q}|_{SIDIS} = h_{1T,p}^{\perp q}|_{DY}$ $f_{1T,p}^{\perp q}|_{SIDIS} = -f_{1T,p}^{\perp q}|_{DY}$ $h_{1,p}^{\perp q}|_{SIDIS} = -h_{1,p}^{\perp q}|_{DY}$

IQUE EXPERIMENTAL ACCESS TO

SIDIS on transversely polarized nucleons COMPASS 2007, 2010 - $\mu + p^{\uparrow} \rightarrow \mu' + h + X$

Riccardo Longo

Essentially the same experimental setup + Comparable x:Q² kinematic coverage =

UNIQUE EXPERIMENTAL ENVIRONMENT TO TEST TMD UNIVERSALITY

- 2010 data into the 4 DY Q² ranges

$2.85 < M_{\mu\mu}/(GeV/c^2) < 3.4$, "Charmonia mass"

Riccardo Longo

Anselmino et al., **PLB 770 (2017) 302**

All DY TSAs in the J/ ψ mass range are small and compatible with zero

Interpretation of the results not straightforward (TMD framework, J/ψ production mechanism, ...)

Hint that J/ψ production might go via gg fusion in **COMPASS** kinematic regime

> See also talk by J.C.Peng **Monday Afternoon Session**

Sivers

Pretzelosity

DY - HM range

 $A_T^{\sin(2\varphi_{CS}-\varphi_S)} \propto h_{1,\pi}^{\perp q} \otimes h_{1,p}^{q}$

MPASS UNIQUE TEST OF TMD UNIVERSAL

COMPASS DY 2015+2018 Final results arXiv:2312.17379, accepted by PRL

Transversity

FINAL COMPASS DY RESULTS:

- GENERAL AGREEMENT WITH UNIVERSALITY IN TMD-QCD PARTON MODEL APPROACH
- FAVORS THE SIGN-CHANGE OF SIVERS TMD PDF IN DY
- WHAT ABOUT BOER-MULDERS?

Riccardo Longo

Sivers

• General expression for the unpolarized part of the DY cross-section:

$$\frac{\mathrm{d}N}{\mathrm{d}\Omega} = \frac{3}{4\pi} \frac{1}{\lambda + 3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\varphi_{CS} \right]$$

 $\lambda = A_U^1$, $\mu = A_U^{co}$ **3 Unpolarized Asymmetries (UAs)**

- At LO of Drell-Yan process, the virtual photon is produced purely by the electromagnetic $q + \bar{q}$ annihilation: $\lambda = 1, \mu = \nu = 0$

$$v_{U}^{\cos\varphi_{CS}}$$
, $v = 2A_{U}^{\cos2\varphi_{CS}}$

Y.Lien, SciPost Phys. Proc. 2021

$$A_{UU}^{\cos 2\phi} = \frac{\nu}{2} \propto h_1^{\perp q}(p) \otimes h_1^{\perp \bar{q}}(\pi^{-1})$$

UNPOLARIZED CROSS-SECTION

$$A_T^{\sin(2\varphi_{CS}-\varphi_S)} \propto -\left\{h_{1,\pi^-}^{\perp\bar{u}} \otimes h_{1,p}^{u}\right\} < 0 =$$
$$A_T^{\cos 2\varphi_{CS}} \propto \left\{h_{1,\pi^-}^{\perp\bar{u}} \otimes h_{1,p}^{\perp u}\right\} > 0 \implies$$

INUS TRACK: BOER-MULDERS SIGN CHANGE TEST

 $h_{1,p}^{\perp,u} < 0$

From fits to COMPASS SIDIS data See Barone et al, **PRD (2010) 114025**

COMPASS DATA ALSO FAVORS THE PROTON BOER-MULDERS TMD PDF SIGN-CHANGE

ACCESSING π PDF and p NPDF via dy cross-section Data from light (NH₃, Al) Lithium

Riccardo Longo

Eur. Phys. J. C (2017) 77:163

Data to be included in future global fits (MAP, JAM,

etc.) to also inform the π TMD PDF!

MAP collaboration **PRD 107, 014014**

See talk by J.C.Peng Monday Afternoon Session

See talk by M.Radici (Tuesday Morning)

- COMPASS recently completed his physics programme with **20 years** of data-taking
- Several successful measurements that helped to unravel the nucleon spin structure
 - Wide and unique phase space coverage in x and Q^2
 - Polarized and unpolarized (SI)DIS on p and D targets
 - All asymmetries of the SIDIS cross- section measured
 - New, high-statistics D data from 2022 several ongoing measurements
 - First ever π^- -induced polarized Drell-Yan
 - All asymmetries of the Drell-Yan cross-section measured in both HM and J/Psi range
 - New preliminary results on cross-section & unpolarized asymmetries
 - Unique experimental environment to test the universality of TMD PDFs
 - Analysis Phase started in 2023
 - generation of experiments ...

Riccardo Longo

• Petabytes of unique data still being analyzed - several opportunities for new studies waiting for the next

HD ERA: EIC+SOLD

Nucl. Phys. A 1026 (2022) 122447

COMPASS pioneer **multi-dimensional** SIDIS analyses to explore the TMD nucleon structure

SoLID White Paper (2022)

New 'HD' era w/ high-luminosity data samples:

EIC: detailed mapping of the TMD nucleon structure at intermediate/low-x

SoLID and JLab12 @ JLab: precision measurement of nucleon's TMDs in the valence region

And Z. Zhao (Wednesday Morning)

THANK YOU FOR YOUR ATTENTION!

Thanks to B.Parsamyan for useful discussions and suggestions

SIDIS PROTON COLLINEAR MULTIPLICITIES

- Expected to be published soon
- Next in line: TMD multiplicities

• Collinear multiplicities for identified hadrons on p target recently released (see also talk by M.Stolarski at DIS2024)

$$\frac{d\sigma}{dxdydzdP_T^2d\phi_hd\phi_S} = \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)\times\left(1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\right)$$
$$A_{UU}^{\cos\phi_h}\leftrightarrow F_{UU}^{\cos\phi_h} = \frac{2M}{Q}C\left\{-\frac{\hat{\mathbf{h}}\cdot\mathbf{p_T}}{M_h}\left[xhH_{1q}^{\perp h}+\frac{M_h}{M}f_1^q\frac{D_q^{\perp h}}{z}\right] - \frac{\hat{\mathbf{h}}\cdot\mathbf{k_T}}{M}\left[xf^{\perp q}D_{1q}^h+\frac{M_h}{M}h_1^{\perp q}\frac{\tilde{H}_q^h}{z}\right]\right\}$$

- Complex structure function different contributions from twist-2 and twist-3 functions
- Several, non-trivial, corrections: (acceptance effects, **diffractively** produced vector mesons (VM), radiative corrections (RC), etc...

 $\phi_h \cos \phi_h + \varepsilon A_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \dots)$

Cahn effect (1978): non-

zero k_T induces an azimuthal modulation

$$\frac{d\sigma}{dxdydzdP_T^2d\phi_hd\phi_S} = \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)\times\left(1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\right)$$
$$A_{UU}^{\cos\phi_h}\leftrightarrow F_{UU}^{\cos\phi_h} = \frac{2M}{Q}C\left\{-\frac{\hat{\mathbf{h}}\cdot\mathbf{p_T}}{M_h}\left[xhH_{1q}^{\perp h}+\frac{M_h}{M}f_1^q\frac{D_q^{\perp h}}{z}\right] - \frac{\hat{\mathbf{h}}\cdot\mathbf{k_T}}{M}\left[xf^{\perp q}D_{1q}^h+\frac{M_h}{M}h_1^{\perp q}\frac{\tilde{H}_q^h}{z}\right]\right\}$$

- Complex structure function different contributions from twist-2 and twist-3 functions
- Several, non-trivial, corrections: (acceptance effects, diffractively produced vector mesons (VM), radiative corrections (RC), etc...

 $\phi_h \cos \phi_h + \varepsilon A_{IIII}^{\cos 2\phi_h} \cos 2\phi_h + \dots)$

Cahn effect (1978): non-

zero k_T induces an azimuthal modulation

		F						
10^{-2}	10^{-1}	0.2	0.4	0.6	0.8	0.5	1	1.
10	Ĵ	x				Z	$p_{\rm T}$ (GeV/

data	$\delta u = \int_0^{0}$
previous [25, 28, 29]	0.18
previous [25, 28, 29] and present	0.21

$$\begin{split} F_{LL}^{1} &= \mathcal{C}\left\{g_{1L}^{q}D_{1q}^{h}\right\}\\ F_{UL}^{\sin\phi_{h}} &= \frac{2M}{\mathcal{Q}}\mathcal{C}\left\{-\frac{\hat{h}\cdot p_{T}}{M_{h}}\left(xh_{L}^{q}H_{1q}^{\perp h} + \frac{M_{h}}{M}g_{1L}^{q}\frac{\tilde{G}_{q}^{\perp h}}{z}\right)\right.\\ &+ \frac{\hat{h}\cdot k_{T}}{M}\left(xf_{L}^{\perp q}D_{1q}^{h} - \frac{M_{h}}{M}h_{1L}^{\perp q}\frac{\tilde{H}_{q}^{h}}{z}\right)\right\}\\ F_{UL}^{\sin2\phi_{h}} &= \mathcal{C}\left\{-\frac{2\left(\hat{h}\cdot p_{T}\right)\left(\hat{h}\cdot k_{T}\right) - p_{T}\cdot k_{T}}{MM_{h}}h_{1L}^{\perp q}H_{1q}^{\perp h}\right\}\\ F_{LL}^{\cos\phi_{h}} &= \frac{2M}{\mathcal{Q}}\mathcal{C}\left\{-\frac{\hat{h}\cdot p_{T}}{M_{h}}\left(xe_{L}^{q}H_{1q}^{\perp h} + \frac{M_{h}}{M}g_{1L}^{q}\frac{\tilde{D}_{q}^{\perp h}}{z}\right)\right.\\ &+ \frac{\hat{h}\cdot k_{T}}{M}\left(xg_{L}^{\perp q}D_{1q}^{h} - \frac{M_{h}}{M}h_{1L}^{\perp q}\frac{\tilde{E}_{q}^{h}}{z}\right)\right\} \end{split}$$

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ + S_L \left[\sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \varepsilon A_{UL}^{\sin2\phi_h} \sin2\phi_h\right] \right] \\ + S_L \lambda \left[\sqrt{1 - \varepsilon^2} A_{LL} + \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LL}^{\cos\phi_h} \cos\phi_h\right] \right] \right\}$$

COMPASS collected large amount of L-SIDIS data Unprecedented precision for some amplitudes! $A_{UL}^{\sin \phi_h}$

- Sizable TSA-mixing
- h⁻ compatible with zero $A_{UL}^{\sin 2\phi_h}$
- Only "twist-2" ingredients
- Additional p_T-suppression
- Collins-like behavior? $A_{LL}^{\cos\phi_h}$
 - ۲
 - ٠

16 May 2024

Q-suppression, Various different "twist" ingredients

Significant h⁺ asymmetry, clear *z*-dependence

Compatible with zero, in agreement with models

Q-suppression, Various different "twist" ingredients Compatible with zero, in agreement with models

- I. $1 < M_{\mu\mu}/(GeV/c^2) < 2$, "Low mass"
 - Large background contamination

II. $2 < M_{\mu\mu}/(GeV/c^2) < 2.5$, "Intermediate mass"

- High DY cross-section.
- •Low DY-signal/background ratio.
- III. 2.5 < $M_{\mu\mu}/(GeV/c^2)$ < 4.0, "Charmonia mass"
 - Strong J/ ψ signal \rightarrow Studies of J/ ψ physics.
 - Good signal/background.
- IV. 4.0 < $M_{\mu\mu}/(GeV/c^2)$ < 8.5, "High mass"
 - •Beyond J/ ψ and ψ ' peak, background < 4%.
 - Valence quark region \rightarrow u-quark dominance.
 - Low DY cross-section

SECTION RATIOS

Int.J.Mod.Phys.Conf.Ser. 40 (2016) 1660029

3D binning x:Q²:p_T or x:Q²:z or x:z:p_T

ITY PRECISION W/

COMPASS **3D** SIDIS analysis - **Sivers** example - **x:Q²:p**