TMDs early studies ... @ sub-leading power SoLID opportunity

Importance of NLP TMDs \& Factorization

- Importance of NLP TMD observables underscored by observation that while they are suppressed by M / Q wrt $L P$ observables:
- NLP/SLP TMDs can be as sizable as leading-power TMDs in some situations where Q is not that large... not small in the kinematics of fixed-target experiments
-Their understanding is required for a complete description of "benchmark processes" SIDIS, DY \& $e^{+} e^{-} \ldots$
- Are of interest offer a mechanism to probe physics of quark-gluon-quark correlations, provide novel information about the partonic structure of hadrons, and are largely unexplored.
- Such correlations may be considered quantum interference effects, related to average
transverse forces acting on partons inside (polarized) hadrons as well as other phenomena.
- Experimental information from SIDIS on effects related to subleading TMDs is \& has been available DESY/Zeus, Fermi-LAB, HERMES, COMPASS
- Opportunity for SoLID TMD program large lumi \& EIC with its large kinematical coverage will be ideal for making further groundbreaking progress in this area
oNB: Iff factorization can be established beyond "tree level" \& leading order -Global analysis of NLP TMDs

TMD fact at NLP w\&w/o polarization (incomplete list)

F. Rivindal PLB 1973

Georgi Politzer PRL 1978
Cahn PLB 1978 (response to Georgi Politzer PRL 1978)

A.Kotzinıan IVPD (1994)

J. Levelt, P.Mulders Phys. Rev. D(1994)
R. Tangerman, P. Mulders hep-ph/9408305 [hep-ph] (1994)
P.Mulders, R. Tangerman, NPB 461(1996)
D. Boer, P. Mulders, Phys.Rev.D 57 (1998)
L. Gamberg, D. Hwang, A Metz, M. Schlegel, PLB 639 (2006), uncanceled rapidity div. @tw3-factorization Boer Vogelsang DY PRD 2006
Koike Nagashima Vogelsang SIDIS NPB 2006 Large P_{T}
A.Bacchetta, D. Boer, M. Diehl, P. Mulders JHEP (2008) factorization at NLP consistency checks on matching A.P. Chen, J.P. Ma, Phys. Lett. B 768 (2017)
I. Feige, D.W. Kolodrubetz, I. Moult, I.W. Stewart, J. High Energy Phys. 11 (2017)
I. Balitsky, A. Tarasov, J. High Energy Phys. 07 (2017)
I. Balitsky, A. Tarasov, J. High Energy Phys. 05 (2018)
M.A. Ebert, I. Moult, I.W. Stewart, F.J. Tackmann, G. Vita, H.X. Zhu, J. High Energy Phys. 12 (2018)
M.A. Ebert, I. Moult, I.W. Stewart, F.J. Tackmann, G. Vita, H.X. Zhu, J. High Energy Phys. 04 (2019)

Moult, I.W. Stewart, G. Vita, arXiv:1905 .07411, 201
A. Bacchetta Bozzi, Echevarria, Pisano, Prokudin, Radici, Physics Letters B 797 (2019)
A.Vladimirov Moos, Scimemi, \& S.Rodini JHEP 2022
M. Ebert A. Gao I. Stewart JHEP 06 (2022)
S. Rodini, A. Vladimirov JHEP 08 (2022)
L.Gamberg, Z.Kang, D.Shao, J.Terry, F.Zhao arXiv: e-Print:221.13209 (2022)
I.Balitsky, JHEP 03 (2023) and 2024

Also Spin transverse spin-dependence Qui Sterman collinear higher twist 1991 NLB
X. Ji, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.Rev.Lett. 97 (2006), Phys.Lett.B 638 (2006),Phys.Rev.D 73 (2006)

Challenges of SLP/NLPTMDs

NLP TMD observables challenging in comparison to the current state-of-the-art of leading power observables
Treatments in the literature are mostly limited to a tree-level formalism until recently
**First studies beyond tree level : Bacchetta et al. JHEP 20o8, Chen et al. PLB 2017

More recently results beyond $\mathbf{L O}$

A.P. Chen, J.P. Ma, PLB (2017)

Bacchetta et al. PLB 2019
MIT group, Gao, Ebert, Stewart JHEP 2022
Gamberg, Kang, Shao, Terry, Zhao arXiv: e-Print:221.13209
Vladimirov, Rodini, Scimemi, Moos, JHEP 2021, 2022, arXiv 2023
Balitsky 2023 rapidity only TMD evolution
See also Ch. 10 TMD handbook, e-Print:2304.03302 [hep-ph]

- In arXiv: e-Print:221.13209 present a systematic procedure for stress testing TMD factorization for DY \& SIDIS at NLP using CSS formalism which addresses disagreements in the literature

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook

Renaud Boussarie ${ }^{1}$, Matthias Burkardt ${ }^{2}$, Martha Constantinou ${ }^{3}$, William Detmold ${ }^{4}$, Markus Ebert ${ }^{4,5}$, Michael Engelhardt ${ }^{2}$, Sean Fleming ${ }^{6}$, Leonard Gamberg ${ }^{7}$, Xiangdong Ji ${ }^{8}$, Zhong-Bo Kang ${ }^{9}$,
Christopher Lee ${ }^{10}$, Keh-Fei Liu ${ }^{11}$, Simonetta Liuti ${ }^{12}$, Thomas Mehen ${ }^{13}$, Andreas Metz ${ }^{3}$, John Negele ${ }^{4}$
Daniel Pitonyak ${ }^{14}$, Alexei Prokudin ${ }^{7,16}$, Jian-Wei Qiu ${ }^{16,17}$, Abha Rajan ${ }^{12,18}$, Marc Schlegel ${ }^{2}$, 19 ,
Phiala Shanahan ${ }^{4}$, Peter Schweitzer ${ }^{20}$, Iain W. Stewart ${ }^{4}$, Andrey Tarasov ${ }^{21,22}$, Raju Venugopalan ${ }^{18}$, Ivan Vitev ${ }^{10}$, Feng Yuan ${ }^{23}$, Yong Zhao ${ }^{24,4,18}$

10-Subleading TMDs L. Gamberg, A. Metz, I. Stewart

0 Subleading TMDs [308
10.1 Introduction 308
10.2 Observables for Subleading TMDs 309
10.3 Subleading TMD Distribution Functions 310
10.3.1 Quark-gluon-quark correlators 314
10.3.2 Subleading quark-quark correlators and equations of motion 314
10.4 Factorization for SIDIS with Subleading Power TMDs 318
10.4.1 Status of SIDIS factorization at next-to-leading power 318
10.4.2 SIDIS structure functions in terms of next-to-leading power TMD 320
10.5 Experimental Results for Subleading-Power TMD Observables 326

From a historical perspective it is very interesting that the subleading-power $\cos \phi_{h}$ azimuthal modulation of the unpolarized SIDIS cross section was important for the development of the TMD field, since one of the earliest discussions of transverse parton momenta in DIS is related to this observable [290,291,1237]; see also Sec. 5.1 for more details. Generally, although suppressed by Λ / Q with respect to leading-power observables, subleading TMD observables are typically not small, especially in the kinematics of fixed-target experiments. In fact, the first-ever observed SSA in SIDIS was a sizeable power-suppressed longitudinal target SSA for pion production from the HERMES Collaboration [480]. Those measurements, which triggered many theoretical studies and preceded the first measurements of the (leading-power) Sivers and Collins SSAs, were critical for the growth of TMD-related research.
[290] R. N. Cahn, Azimuthal Dependence in Leptoproduction: A Simple Parton Model Calculation, Phys. Lett. B 78 (1978) 269.
[1237] F. Ravndal, On the azimuthal dependence of semiinclusive, deep inelastic electroproduction cross-sections, Phys. Lett. B 43 (1973) 301.
[480] HERMES collaboration, A. Airapetian et al., Observation of a single spin azimuthal asymmetry in semiinclusive pion electro production, Phys. Rev. Lett. 84 (2000) 4047

Outline

-Heuristic disc. factorization-key approach to probe partonic structure of hadrons QCD
-Predictability based on universality \& evolution equation of factorized cross sections in terms of QCFs (e.g. TMDs GPDs) and hard cross sections

- Bench-mark processes to probe partonic 3-D momentum-spatial structure of hadrons
-The beginning of TMD Physics? "The observable" $\langle\cos \phi\rangle$
-Georgi \& Cahn, PRL 1978, PLB 1978 (Ravndal, PLB 1972) \& Feynman PR 1978
Critique of the perturbative QCD calculation of azimuthal dependence in leptoproduction emphasize importance intrinsic \boldsymbol{k}_{T} the early days/birth of TMD physics
"Led to /Leads to..."
1.The challenge of mapping "low" to "high" transverse momentum spectrum q_{T} or $P_{h T}$

2. Factorization BUT(!) @ NLP order $\alpha_{s} \ldots$ issues ... necessary (but not sufficient) consistency checks
3."Ongoing work"

Intro Comments Factorization

- QCD predicts hadrons are dynamical system of quarks \& gluons governed by predictions of the running "QCD" coupling displaying asymptotic freedom of interactions at short distance, and confinement at long distance scales

Intro Comments Factorization

- The delicate interplay of confinement coexisting asymptotic freedom allows link quarks \& gluons @ short time and distance scales to hadrons measured in high energy deep inelastic scattering experiments.
- Asymptotic freedom, makes it possible to use the formalism of QCD factorization to quantify the partonic structure \& dynamics of hadrons in terms of quantum field theoretic (universal) parton correlation functions called "benchmark processes"

Semi-Inclusive DIS

Drell-Yan

Dihadron in $\mathrm{e}^{+} \mathbf{e}^{-}$

Factorization and scales

"TMD" physics problem characterized in terms of the 3 scales namely:
othe scale of nonperturbative QCD dynamics, which we represent by the nucleon mass $M \sim \Lambda_{Q C D}$ othe transverse momentum $P_{h \perp}$ of the produced hadron, othe hard scale of photon/probe Q, which we require to be large compared with M

Intro Comments

- There are two basic descriptions for the production of particle with specified transverse momentum q_{T} or $P_{h \perp}\left(\right.$ or $\left.P_{h T}\right)$

Semi-Inclusive DIS

TMD Framework

- One framework is applicable when $\Lambda_{Q C D} \sim P_{h \perp} \ll Q$ (hard scale)
- QCD theory predicts that $P_{h \perp} \sim \mathbf{k}_{T}$ or \mathbf{p}_{T} (intrinsic transverse momentum partons in hadrons), the non-perturbative structure is given by transverse momentum dependent (TMD) parton distribution functions (PDFs) and or fragmentation functions (FFs), while the perturbative hard scattering cross sections probe the short distance dynamics of partons

Quark

$$
E^{\prime} E_{h} \frac{\mathrm{~d} \sigma_{e p \rightarrow e^{\prime} h X}}{\mathrm{~d}^{3} l^{\prime} \mathrm{d}^{3} P_{h}} \approx \hat{\sigma}_{e q \rightarrow e^{\prime} q^{\prime}} \otimes f_{1} \widetilde{\otimes} D_{h / q^{\prime}} .
$$

are 1.1: Illustration of the moıtum and spin variables probed [MD parton distributions.

Collinear Framework

- Another framework is applicable when $P_{h \perp} \sim Q \gg \Lambda_{Q C D}$
- QCD theory predicts that $P_{h \perp} \gg \mathbf{k}_{T}$ or \mathbf{p}_{T} (generates transverse momentum in the final state as perturbative radiation where the non-perturbative structure is given by collinear (integrated) parton distribution functions (PDFs) and or fragmentation functions (FFs)

$$
E^{\prime} E_{h} \frac{\mathrm{~d} \sigma_{e p \rightarrow e^{\prime} h X}}{\mathrm{~d}^{3} l^{\prime} \mathrm{d}^{3} P_{h}} \approx \hat{\sigma}_{e q \rightarrow e^{\prime} q^{\prime}} \otimes f_{1} \widetilde{\otimes} D_{h / q^{\prime}}
$$

Factorization and angular distributions

A number of nontrivial issues for factorization arise when one observes the transverse momentum $P_{h \perp}$ and the angular distribution of the produced particle with respect to a suitable reference direction Will see in context of "LP vs. NLP" factorization

$$
\text { Goes back to } \sim 1978
$$

TMDs@ "twist-3" NLP-the beginning?

Historical-context

- Georgi Politzer, PRL 1978

Performed QCD analysis of hard gluon radiation in SIDIS to predict absolute value of final state hadron's \boldsymbol{P}_{T}, and the angular distribution relative to lepton scattering plane $\langle\cos \phi\rangle$

- $\mathbf{1 2 - 1 5 \%}$...clean test of QCD since such effects would not arise as a result of limited transverse momentum associated with confined quarks
-"Measurement of $\langle\cos \phi\rangle$ provide very clean test of the perturbative predictions of QCD"
- Cahn, PLB 1978, (\& earlier paper by Ravndal, PLB 1972)

Critique of the QCD calculation of azimuthal dependence in leptoproduction; emphasize importance intrinsic $\boldsymbol{k}_{T} \ldots$
-"We conclude that the azimuthal dependence in vector exchange interactions is inevitable since the partons have transverse momentum as a consequence of being confined and such dependence certainly does not require a special mechanism like gluon bremstrahlung" - "...Results (of Cahn78) cast doubt on the utility of such azimuthal asymmetry as a clean test of quantum chromodynamics " (i.e. of G\&P78)

The observable $\langle\cos \phi\rangle$

No assumption of mechanism
$\frac{d \sigma}{d x_{H} d y d z_{H} d^{2} P_{T}}:=\mathcal{A}+\mathcal{B} \cos \phi+\mathcal{C} \cos 2 \phi+\mathcal{D} \sin \phi+\mathcal{E} \sin 2 \phi$

$$
\int d \sigma^{(1)} \cos \phi=\int d^{2} P_{T} \cos \phi \frac{d \sigma}{d x_{H} d y d z_{H} d^{2} P_{T}}
$$

SIDIS Kinematics dictionary

$$
\begin{aligned}
& Q^{2}=-q^{2}, \quad \mathbf{P}_{T}=\mathbf{P}_{2 T}, \quad \phi, \\
& x_{H}=\frac{Q^{2}}{2 P_{1} \cdot q}, \quad y=\frac{P_{1} \cdot q}{P_{1} \cdot k_{1}}, \quad z_{H}=\frac{P_{1} \cdot P_{2}}{P_{1} \cdot q},
\end{aligned}
$$

and the parton variables

$$
x=\frac{x_{H}}{\xi}=\frac{Q^{2}}{2 p_{1} \cdot q}, \quad z=\frac{z_{H}}{\xi^{\prime}}=\frac{p_{1} \cdot p_{2}}{p_{1} \cdot q} .
$$

Clean tests of QCD?

PHYSICAL REVIEW
 LETTERS

Volume 40
2 JANUARY 1978
Number 1

Clean Tests of Quantum Chromodynamics in μp Scattering

Howard Georgi

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Hard gluon bremsstrahlung in μp scattering produces final-state hadrons with a large component of momentum transverse to the virtual-photon direction. Quantum chromodynamics can be used to predict not only the absolute value of the transverse momentum, but also its angular distribution relative to the muon scattering plane. The angular correlations should be insensitive to nonperturbative effects.

and
H. David Politzer
California Institute of Technology, Pasadena, California 91125 (Received 25 October 1977)

都
a.

b.

Cahn intrinsic \boldsymbol{k}_{T}

AZIMUTHAL DEPENDENCE IN LEPTOPRODUCTION: A SIMPLE PARTON MODEL CALCULATION ${ }^{\text {TH }}$

Robert N. CAHN

Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Received 5 June 1978

> parton model argument allowing for transverse momentum in Mandelstam variables...

Semi-inclusive leptoproduction, $\ell+p \rightarrow \ell^{\prime}+h+X$, is considered in the naive parton model. The scattered parton shows an azimuthal asymmetry about the momentum transfer direction. Simple derivations for the effects in ep, $\nu \mathrm{p}$ and $\nu \mathrm{p}$ scattering are given. Reduction of the asymmetry due to fragmentation of partons into hadrons is estimated. The results cast doubt on the utility of such azimuthal asymmetry as a clean test of quantum chromodynamics.

Cahn intrinsic \boldsymbol{k}_{T}

Simple parton model argument allowing for transverse momentum Mandelstam variables...

$$
\begin{aligned}
\sigma_{e p} \propto \widehat{s}^{2}+\widehat{u}^{2} \propto & {\left[1-\frac{2 p_{\perp}}{Q} \sqrt{1-y} \cos \phi\right]^{2} } \\
+ & +(1-y)^{2}\left[1-\frac{2 p_{\perp}}{Q^{\sqrt{1-y}}} \cos \phi\right]^{2}
\end{aligned}
$$

Two mechanisms? Collinear Factorization

Cahn intrinsic \boldsymbol{k}_{T}

Georgi \& Politzer

hard gluon bremsstrahlung P_{T}

b.

- "Collinear" region

$$
\frac{d^{5} \sigma}{d x_{b j} d Q^{2} d z_{f} d q_{T}^{2} d \phi}=\frac{\alpha_{e}^{2} \alpha_{s}}{8 \pi x_{b j}^{2} S_{e p}^{2} Q^{2}} \sum_{k} \mathcal{A}_{k} \int_{x_{\min }}^{1} \frac{d x}{x} \int_{z_{f}}^{1} \frac{d z}{z}\left[f \otimes D \otimes \hat{\sigma}_{k} \times \delta\left(\frac{q_{T}^{2}}{Q^{2}}-\left(\frac{1}{\hat{x}}-1\right)\left(\frac{1}{\hat{z}}-1\right)\right)\right.
$$

$$
\Lambda_{q c d} \ll q_{T} \sim Q
$$

Two mechanisms? TMD Factorization

- "TMD" region

$$
\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q
$$

$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.
$$

Georgi \& Politzer hard gluon bremsstrahlung \boldsymbol{p}_{T}
b.

c.

e.g.

$$
F_{U U}^{\cos \phi_{h}} \approx \frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1} D_{1}\right]
$$

P.Mulders, R. Tangerman, NPB (1996), Bacchetta et al. JHEP 2007

Two mechanisms? Matching ...

Cahn intrinsic \boldsymbol{k}_{T}

- "TMD" region

$$
\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q
$$

Georgi \& Politzer

hard gluon bremsstrahlung \boldsymbol{p}_{T}

A comprehensive study of matching the hi \& low Q_{T} in the overlap region in SIDIS was carried out by JHEP (2008) Bacchetta et al. where attention was given to azimuthal and polarization dependence
$\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q$

"TMD region??"

$$
\frac{\mathrm{d} \sigma^{e p \rightarrow e h X}}{\mathrm{~d} \phi}=\mathcal{A}+\mathcal{B} \cos \phi+\mathcal{C} \cos 2 \phi+\mathcal{D} \sin \phi+\mathcal{E} \sin 2 \phi
$$

EMC collaboration Phys. Lett. B 130 (1983) 118, \& Z. Phys. C 34 (1987) 277

Fig $4 p \mathrm{~T}$ dependence $\left(p_{\mathrm{T}}>50 \mathrm{MeV}\right)$ of $\cos \varphi$ moment for $160 \leqslant W^{2}<360 \mathrm{GeV}^{2}, Q^{2}>10 \mathrm{GeV}^{2}$ and $z>0.15 \mathrm{com}-$ pared with model calculations described in ref [8] (statistical errors on model curve from Monte Carlo ± 003 not shown)

In conclusion a finite $\langle\cos \varphi\rangle$ has been observed in deep inelastic muon scattering. The sıgn of the effect is negative and shows little Q^{2} or W^{2} dependence. There is a significant increase of the asymmetry as a function of z and p_{T}. The general trend of the data is reproduced by a model containing a large effective intrinsic momentum. A contribution from leading order QCD cannot be excluded but is at present not required by the data.

$$
\Lambda_{q c d} \ll q_{T} \sim Q
$$

"Collinear region??"

E665 Phys. Rev. D 48 (1993) 5057

DATA

$$
\frac{\mathrm{d} \sigma^{e p \rightarrow e h X}}{\mathrm{~d} \phi}=\mathcal{A}+\mathcal{B} \cos \phi+\mathcal{C} \cos 2 \phi+\mathcal{D} \sin \phi+\mathcal{E} \sin 2 \phi
$$

$$
\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q
$$

"TMD region"

More recent experiments

COMPASS, Nucl. Phys. B 886 (2014) 1046
HERMES, Phys. Rev. D 87 (2013) 012010

More recent 20162017 data

$$
\frac{\mathrm{d} \sigma^{e p \rightarrow e h X}}{\mathrm{~d} \phi}=\mathcal{A}+\mathcal{B} \cos \phi+\mathcal{C} \cos 2 \phi+\mathcal{D} \sin \phi+\mathcal{E} \sin 2 \phi
$$

COMPASS preliminary

20162017 data
TMD observables in unpolarised Semi-Inclusive DIS at COMPASS, see talk of Riccardo Longo $\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q$
"TMD region"

Theory/Pheno Studies

$$
\langle\cos \phi\rangle=\frac{\int d \sigma^{(0)} \cos \phi+\int d \sigma^{(1)} \cos \phi}{\int d \sigma^{(0)}+\int d \sigma^{(1)}}
$$

Chay, S.D. Ellis, Stirling, Phys. Lett. B (1991)
Oganessyan, Avakian, Bianchi, EPJC (1998)

$$
\begin{aligned}
\int d \sigma^{(0)}= & 2 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{j} Q_{j}^{2} F_{j}\left(x_{H}\right) D_{j}\left(z_{H}\right) \exp \left(-\frac{p_{c}^{2}}{b^{2}+z_{H}^{2} a^{2}}\right) \\
& \times\left\{\frac{1+(1-y)^{2}}{y}+4 \frac{1-y}{y Q^{2}}\left[\frac{a^{2} b^{2}}{b^{2}+z_{H}^{2} a^{2}}+\left(\frac{z_{H} a^{2}}{b^{2}+z_{H}^{2} a^{2}}\right)^{2}\left(p_{c}^{2}+b^{2}+z_{H}^{2} a^{2}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\int d \sigma^{(1)} \cos \phi= & \int d^{2} P_{T} \cos \phi \frac{d \sigma}{d x_{H} d y d z_{H} d^{2} P_{T}} \\
= & \frac{8}{3} \frac{\alpha_{s} \alpha^{2}}{Q^{2}} \frac{(2-y) \sqrt{1-y}}{y} \int_{x_{H}}^{1} \frac{d x}{x} \int_{z_{H}}^{1} \frac{d z}{z} \sum_{j} Q_{j}^{2}\left(A_{j}+B_{j}+C_{j}\right) \\
& A_{j}=-\sqrt{\frac{x z}{(1-x)(1-z)}}[x z+(1-x)(1-z)] F_{j}\left(\frac{x_{H}}{x}, Q^{2}\right) D_{j}\left(\frac{z_{H}}{z}, Q^{2}\right)
\end{aligned}
$$

Simple addition ... "double counting"

$\langle\cos \phi\rangle$ as a function of transverse momentum cutoff - non-perturbative Cahn-like dominate at low p_{c}

- negligible at large values p_{c} because
"intrinsic transverse momentum" in distribution \&. FF too small to produce effect $P_{T}>p_{c}$ (data E665 Fermi-lab).

Theory/Pheno Studies

$$
\langle\cos \phi\rangle=\frac{\int d \sigma^{(0)} \cos \phi+\int d \sigma^{(1)} \cos \phi}{\int d \sigma^{(0)}+\int d \sigma^{(1)}}
$$

Chay, S.D. Ellis, Stirling, Phys. Lett. B (1991)
Oganessyan, Avakian, Bianchi, EPJC (1998)

$$
\begin{aligned}
\int d \sigma^{(0)}= & 2 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{j} Q_{j}^{2} F_{j}\left(x_{H}\right) D_{j}\left(z_{H}\right) \exp \left(-\frac{p_{c}^{2}}{b^{2}+z_{H}^{2} a^{2}}\right) \\
& \times\left\{\frac{1+(1-y)^{2}}{y}+4 \frac{1-y}{y Q^{2}}\left[\frac{a^{2} b^{2}}{b^{2}+z_{H}^{2} a^{2}}+\left(\frac{z_{H} a^{2}}{b^{2}+z_{H}^{2} a^{2}}\right)^{2}\left(p_{c}^{2}+b^{2}+z_{H}^{2} a^{2}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\int d \sigma^{(1)} \cos \phi= & \int d^{2} P_{T} \cos \phi \frac{d \sigma}{d x_{H} d y d z_{H} d^{2} P_{T}} \\
= & \frac{8}{3} \frac{\alpha_{s} \alpha^{2}}{Q^{2}} \frac{(2-y) \sqrt{1-y}}{y} \int_{x_{H}}^{1} \frac{d x}{x} \int_{z_{H}}^{1} \frac{d z}{z} \sum_{j} Q_{j}^{2}\left(A_{j}+B_{j}+C_{j}\right) \\
& A_{j}=-\sqrt{\frac{x z}{(1-x)(1-z)}}[x z+(1-x)(1-z)] F_{j}\left(\frac{x_{H}}{x}, Q^{2}\right) D_{j}\left(\frac{z_{H}}{z}, Q^{2}\right)
\end{aligned}
$$

- non-perturbative Cahn-like small at large Q

Simple addition ... "double counting"

$$
\langle\cos \phi\rangle=\frac{\int d \sigma^{(0)} \cos \phi+\int d \sigma^{(1)} \cos \phi}{\int d \sigma^{(0)}+\int d \sigma^{(1)}}
$$

$$
\begin{aligned}
\int d \sigma^{(0)}= & 2 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{j} Q_{j}^{2} F_{j}\left(x_{H}\right) D_{j}\left(z_{H}\right) \exp \left(-\frac{p_{c}^{2}}{b^{2}+z_{H}^{2} a^{2}}\right) \\
& \times\left\{\frac{1+(1-y)^{2}}{y}+4 \frac{1-y}{y Q^{2}}\left[\frac{a^{2} b^{2}}{b^{2}+z_{H}^{2} a^{2}}+\left(\frac{z_{H} a^{2}}{b^{2}+z_{H}^{2} a^{2}}\right)^{2}\left(p_{c}^{2}+b^{2}+z_{H}^{2} a^{2}\right)\right]\right\} \\
\int d \sigma^{(1)} \cos \phi & =\int d^{2} P_{T} \cos \phi \frac{d \sigma}{d x_{H} d y d z_{H} d^{2} P_{T}} \\
& =\frac{8}{3} \frac{\alpha_{s} \alpha^{2}}{Q^{2}} \frac{(2-y) \sqrt{1-y}}{y} \int_{x_{H}}^{1} \frac{d x}{x} \int_{z_{H}}^{1} \frac{d z}{z} \sum_{j} Q_{j}^{2}\left(A_{j}+B_{j}+C_{j}\right)
\end{aligned}
$$

"W" termTheory/Pheno studies

One of the "first" TMD analysis Role of Cahn effect in SIDIS from TMD framework Modeling tree level result comparing w/ E665 data

Anselmino, Boglione,D'Alesio, Kotzinian, Murgia, Prokudin PRD 71, 074006 (2005)

Wandzura Wilzeck approx in TMD Bacchetta et al. JHEP 2007

$$
\frac{d^{5} \sigma^{\ell p \rightarrow \ell h X}}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T}} \simeq \sum_{q} \frac{2 \pi \alpha^{2} e_{q}^{2}}{Q^{4}} f_{q}\left(x_{B}\right) D_{q}^{h}\left(z_{h}\right)\left[1+(1-y)^{2}-4 \frac{(2-y) \sqrt{1-y}\left\langle k_{\perp}^{2}\right\rangle z_{h} P_{T}}{\left\langle P_{T}^{2}\right\rangle Q} \cos \phi_{h}\right] \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}
$$

Regions and matching

NPB Collins \& Soper(1982), \& Sterman 1985

Requires systematic factorization approach

$$
\begin{aligned}
& \text { Fixed Order } \\
& \text { Collinear } \\
& \text { Factorization }
\end{aligned} \begin{aligned}
& \text { Collins 2011 Foundations of pQCD Cambridge } \\
& \text { Collins Gamberg Prokudin Rogers Sato Phys.Rev.D 94 (2016) }
\end{aligned}
$$

E615 πW Drell-Yan
Phys. Rev. D 39 (1989).

$$
\begin{gathered}
\equiv W\left(p_{T}, Q\right)+F O\left(p_{T}, Q\right)-A Y\left(p_{T}, Q\right)+O\left(\frac{m}{Q}\right)^{c} \\
\mathbf{n b} \quad \boldsymbol{q}_{\boldsymbol{T}} \rightarrow \mathbf{0}, \quad \boldsymbol{Y} \equiv \boldsymbol{F 0} \rightarrow \mathbf{0}(!!)
\end{gathered}
$$

"Mis"-Matches Factorization @ sub-leading power

$$
\begin{aligned}
& \frac{d \sigma\left(m \lesssim q_{T} \lesssim Q, Q\right)}{d y d q^{2} d p_{T}^{2}}=W\left(p_{T}, Q\right)+F O\left(p_{T}, Q\right)-A Y\left(p_{T}, Q\right)+O\left(\frac{m}{Q}\right)^{c} \\
& \langle\cos \phi\rangle=\frac{\int d \sigma^{(0)} \cos \phi+\int d \sigma^{(1)} \cos \phi}{\int d \sigma^{(0)}+\int d \sigma^{(1)}}
\end{aligned}
$$

- Bacchetta, Boer, Diehl, Mulders JHEP (2008)

Mis-match/inconsistency breakdown of factorization at NLP?
" \ldots the requirement to match the high $-q_{T}$ result (4.25) for $F_{U U}^{\cos \phi_{h}}$ at intermediate q_{T} can be used as a consistency check for any framework that extends Collins-Soper factorization to the twist-three sector."

- Bacchetta Bozzi, Echevarria, Pisano, Prokudin, Radici, PLB (2019)

"Mis"-matches Factorization @ sub-leading power

$$
\langle\cos \phi\rangle=\frac{\int d \sigma^{(0)} \cos \phi+\int d \sigma^{(1)} \cos \phi}{\int d \sigma^{(0)}+\int d \sigma^{(1)}}
$$

To cure mismatch, Bacchetta et al. speculated that soft factor subtraction from LP TMD same as NLP TMDs: PLB (2019)

What's the soft factor ???
Advertisement TMD Handbook 2023 e-Print:2304.03302 [hep-ph]
Collins QCD book 2011, Aybat Rogers 2011 PRD, Echevarria et al. 2012 JHEP

$$
\begin{aligned}
& \tilde{f}_{j / H}^{\text {sub }}\left(x, b_{T} ; \mu, y_{n}\right)=\lim _{\substack{y_{A} \rightarrow+\infty \\
y_{B} \rightarrow-\infty}} \underbrace{\tilde{f}_{j / H}^{\text {unsub }}\left(x, b_{T} ; \mu, y_{P}-y_{B}\right)} \sqrt{\frac{\tilde{S}\left(b_{T} ; y_{A}, y_{n}\right)}{\tilde{S}\left(b_{T} ; y_{A}, y_{B}\right) \tilde{S}\left(b_{T} ; y_{n}, y_{B}\right)}} \times U V_{r e n o r m} \\
& \Uparrow \\
& \tilde{f}_{j / H}^{\text {unsub }}\left(x, b_{T} ; \mu, y_{P}-y_{B}\right)=\left.\int \frac{d b^{-}}{2 \pi} e^{-i x P^{+} b^{-}}\langle P| \bar{\psi}(0) \gamma^{+} \mathcal{U}_{[0, b]} \psi(b)|P\rangle\right|_{b^{+}=0}
\end{aligned}
$$

JCC Soft factor further "repartitioned"
I) cancel LC divergences in "unsubtracted" TMDs
2) separate "right \& left" movers i.e. full factorization
3) remove double counting of momentum regions

Conjecture of Bacchetta et al 2019 based on Matches and mis-matches 2008

$$
\begin{gathered}
? ? ? \quad W \rightarrow A Y \leftarrow F O \quad ? ? ? \\
\mathcal{C}[w f D]=\sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}+\boldsymbol{q}_{T}\right) \times w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}, \sim_{1}\right)
\end{gathered} \begin{gathered}
S\left(l_{T}\right) \\
F_{U U}^{\cos \phi}=\mathscr{C}\left[\frac{\hat{h} \cdot p_{\perp}}{Q} f_{1}\left(x, p_{\perp}\right) \frac{\tilde{D}^{\perp}\left(z, k_{\perp}\right)}{z} S\left(l_{\perp}\right)+\frac{\hat{h} \cdot k_{\perp}}{Q} x f^{\perp}\left(x, p_{\perp}\right) D_{1}\left(z, k_{\perp}\right) S\left(l_{\perp}\right)\right]
\end{gathered}
$$

Method: Bacchetta et al. 2008
let one of $p_{\perp}, k_{\perp} l_{\perp} \rightarrow q_{\perp}$ large other small No contribution from Soft factor term to cancel "mis-match" term from expanding the W term at large Offending mismatch term remains

Method: Bacchetta et al. 2019
Conjecture based on replacement based on LP analysis in $F_{U U, T}$

$$
\begin{aligned}
& \frac{1}{2} L\left(\eta^{-1}\right) \rightarrow \frac{1}{2} L\left(\frac{Q^{2}}{k_{\perp}^{2}}\right)+C_{F}, \\
& \frac{1}{2} L\left(\eta_{h}^{-1}\right) \longrightarrow \frac{1}{2} L\left(\frac{z^{2} Q^{2}}{P_{\perp}^{2}}\right)+C_{F}
\end{aligned}
$$

$$
\begin{aligned}
F_{U U, T}= & \frac{\alpha_{s}}{2 \pi^{2}} \frac{1}{z^{2} q_{T}^{2}} \sum_{a} x e_{a}^{2} \\
& \times\left\{\left[\frac{L\left(\eta^{-1}\right)}{2} f_{1}^{a}(x)-C f f_{1}^{a}(x)+\left(P_{q q} \otimes f_{1}^{a}+P_{q g} \otimes f_{1}^{g}\right)(x)\right] D_{1}^{a}(z)\right. \\
& +f_{1}^{a}(x)\left[\frac{L\left(\eta_{h}^{-1}\right)}{2} D_{1}^{a}(z)-C_{F} D_{1}(z)+\left(D_{1}^{a} \otimes P_{q q}+D_{1}^{g} \otimes P_{g q}\right)(z)\right] \\
& \left.+2 C_{F} f_{1}^{a}(z) D_{1}^{a}(z)\right\} \\
= & \frac{1}{q_{T}^{2}} \frac{\alpha_{s}}{2 \pi^{2} z^{2}} \sum_{a} x e_{a}^{2}\left[f_{1}^{a}(x) D_{1}^{a}(z) L\left(\frac{Q^{2}}{q_{T}^{2}}\right)+f_{1}^{a}(x)\left(D_{1}^{a} \otimes P_{q q}+D_{1}^{g} \otimes P_{g q}\right)(z)\right. \\
& \left.+\left(P_{q q} \otimes f_{1}^{a}+P_{q g} \otimes f_{1}^{g}\right)(x) D_{1}^{a}(z)\right],
\end{aligned}
$$

Noted that this replacement accomplish cancellation but don't need to do this replacement-very little
justification $\quad \frac{1}{2} L\left(\eta^{-1}\right) \longrightarrow \frac{1}{2} L\left(\frac{Q^{2}}{k_{\perp}^{2}}\right)+C_{F}$,

$$
\frac{1}{2} L\left(\eta_{h}^{-1}\right) \longrightarrow \frac{1}{2} L\left(\frac{z^{2} Q^{2}}{P_{\perp}^{2}}\right)+C_{F}
$$

$\cos \phi \quad$ Structure function

$$
\begin{align*}
F_{U U}^{\cos \phi_{h}}= & -\frac{2 q_{T}}{Q} \frac{\alpha_{s}}{2 \pi^{2}} \frac{1}{2 z^{2} q_{T}^{2}} \sum_{a} x e_{a}^{2} \\
\times & \left\{\left[\frac{L\left(\eta^{-1}\right)}{2} f_{1}^{a}(x)+\left(P_{q q}^{\prime} \otimes f_{1}^{a}+P_{q g}^{\prime} \otimes f_{1}^{g}\right)(x)\right] D_{1}^{a}(z)\right. \\
& \left.+f_{1}^{a}(x)\left[\frac{L\left(\eta_{h}^{-1}\right)}{2} D_{1}^{a}(z)-2 C_{F} D_{1}^{a}(z)+\left(D_{1}^{a} \otimes P_{q q}^{\prime}+D_{1}^{g} \otimes P_{g q}^{\prime}\right)(z)\right]\right\} \\
= & -\frac{1}{Q q_{T}} \frac{\alpha_{s}}{2 \pi^{2} z^{2}} \sum_{a} x e_{a}^{2}\left[f_{1}^{a}(x) D_{1}^{a}(z) L\left(\frac{Q^{2}}{q_{T}^{2}}\right)+f_{1}^{a}(x)\left(D_{1}^{a} \otimes P_{q q}^{\prime}+D_{1}^{a} \otimes P_{g q}^{\prime}\right)(z)\right. \\
& \left.+\left(P_{q q}^{\prime} \otimes f_{1}^{a}+P_{q g}^{\prime} \otimes f_{1}^{g}\right)(x) D_{1}^{a}(z)-2 C_{F} f_{1}^{a}(x) D_{1}^{a}(z)\right) \tag{8.55}
\end{align*}
$$

which is not identical to the high- q_{T} result (4.25) because of the extra term $2 C_{F} f_{1}^{a}(x) D_{1}^{a}(z)$

Noted that this replacement accomplish cancellation-conjecture

$$
\begin{aligned}
& \frac{1}{2} L\left(\eta^{-1}\right) \longrightarrow \frac{1}{2} L\left(\frac{Q^{2}}{k_{\perp}^{2}}\right)+C_{F} \\
& \frac{1}{2} L\left(\eta_{h}^{-1}\right) \longrightarrow \frac{1}{2} L\left(\frac{z^{2} Q^{2}}{P_{\perp}^{2}}\right)+C_{F}
\end{aligned}
$$

Here there is no soft contribution to in $F_{U U}^{\cos \phi}$ without some transverse momentum in tensor structure of soft factor

To understand appreciate the subtleties review Tree level TMD @ LP and NLP factorization

In reviewing will remind about the utility of using Fierz decamp \& "good and bad" LC quark fields

Then onto Factorization at NLO address soft factor calculation

Factorization at sub-leading power ... revisit Tree level

$\frac{d \sigma}{d x d y d \Psi d z d^{2} P_{h \perp}}=\kappa \frac{\alpha_{\mathrm{e}}^{2}}{4 Q^{4}} \frac{y}{z} L_{\mu \nu} W^{\mu \nu} . \quad$ " TMD^{\prime} region $\quad\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q$

$$
W_{\mu \nu}=\frac{1}{(2 \pi)^{4}} \sum_{X} \int d^{4} x e^{-i q x}\langle P| J_{\mu}^{\dagger}(0)|h, X\rangle\langle h, X| J_{\nu}(x)|P\rangle,
$$

$$
\begin{gathered}
J_{\mu}(x)=J_{\mu}^{(2)}(x)+J_{\mu}^{(3)}(x) \\
k^{\mu} \sim Q\left(1, \lambda^{2}, \lambda\right), p^{\mu} \sim Q\left(\lambda^{2}, 1, \lambda\right)
\end{gathered}
$$

Working @ NLP, the current contains 3(!) contributions:

- One with 2 partons entering from each correlation function
- Another with 3 partons entering from one correlation function
- \& partonic kinematic power corrections-momentum scaling

Illustrated at "tree level"

Factorization at sub-leading power ... revisit Tree level

$\frac{d \sigma}{d x d y d \Psi d z d^{2} P_{h \perp}}=\kappa \frac{\alpha_{\mathrm{em}}^{2}}{4 Q^{4}} \frac{y}{z} L_{\mu \nu} W^{\mu \nu}$. • "TMD" region $\quad\left(p_{T} \sim k_{T}\right) \sim q_{T} \ll Q$

$$
W_{\mu \nu}=\frac{1}{(2 \pi)^{4}} \sum_{X} \int d^{4} x e^{-i q x}\langle P| J_{\mu}^{\dagger}(0)|h, X\rangle\langle h, X| J_{\nu}(x)|P\rangle,
$$

$$
\begin{gathered}
J_{\mu}(x)=J_{\mu}^{(2)}(x)+J_{\mu}^{(3)}(x) \\
k^{\mu} \sim Q\left(1, \lambda^{2}, \lambda\right), p^{\mu} \sim Q\left(\lambda^{2}, 1, \lambda\right)
\end{gathered}
$$

Working@ NLP, the current contains 3(!) contributions:

- One with 2 partons entering from each correlation function
- Another with 3 partons entering from one correlation function
- \& partonic kinematic power corrections-momentum scaling

Factorization at leading and sub-leading power "Tree level" parton mdl. Fierz decomposition

2 parton hadronic tensor can be organized contributions @ given twist by Fierz decomposition of the quark lines Fierz decomposition of 2 parton correlation function $\quad \delta_{i j} \delta_{j^{\prime} i^{\prime}}=\sum_{a} \Gamma_{i i^{\prime}}^{a} \bar{\Gamma}_{j^{\prime} j}^{a} \quad$ Illustrated in Fig.

$$
\Gamma_{a} \in \underbrace{\left\{\frac{\not \lambda}{4}, \frac{\not \gamma \gamma^{5}}{4}, \frac{i}{4} \sigma^{i+} \gamma^{5}\right.}_{\mathrm{LP}}, \underbrace{\frac{1}{2}}_{\mathrm{NLP}}, \frac{\gamma^{5}}{2}, \frac{\gamma^{i}}{2}, \frac{\gamma^{i} \gamma^{5}}{2}, \frac{i}{2} \sigma^{i j} \gamma^{5}, \frac{i}{4} \sigma^{+-} \gamma^{5}+\ldots . .\}
$$

Factorization at sub-leading power Tree level employ Fierz decomposition

2 parton hadronic tensor can be organized contributions @ given twist by Fierz decomposition of the quark lines Fierz decomposition of 2 parton correlation function $\quad \delta_{i j} \delta_{j^{\prime} i^{\prime}}=\sum_{a} \Gamma_{i i^{\prime}}^{a} \bar{\Gamma}_{j^{\prime} j}^{a} \quad$ Illustrated in Fig.

Factorized !!

$$
W_{\mu \nu}^{(2)}=\frac{1}{N_{c}} \sum_{a, b} \operatorname{Tr}\left[\gamma^{\mu} \bar{\Gamma}^{a} \gamma^{\nu} \bar{\Gamma}^{b}\right] \mathcal{C}^{\text {DIS }}\left[\Phi^{\left[\Gamma^{a}\right]}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right) \Delta^{\left[\Gamma^{b}\right]}\left(z, \boldsymbol{p}_{\perp}, \boldsymbol{S}_{h}\right)\right]
$$

$$
\mathcal{C}^{\mathrm{DIS}}[A B]=\sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{p}_{\perp} \delta^{(2)}\left(\boldsymbol{q}_{\perp}+\boldsymbol{k}_{\perp}+\boldsymbol{p}_{\perp} / z\right) \times A_{q / P}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right) B_{h / q}\left(z, \boldsymbol{p}_{\perp}, \boldsymbol{S}_{h}\right)
$$

By organizing the operators by their twists,

we arrive at the well known expression for the LP and NLP correlation functions

-Mulders Tangerman NPB1995
-Goeke Metz Schlegel PLB 2005
-Bacchetta et al 2007 JHEP

Intrinsic

By organizing the operators by their twists, we arrive at the well known expression for the LP and NLP correlation functions

$$
\Phi\left(x, \boldsymbol{k}_{T}\right)
$$

Subleading Quark TMDPDFs

$$
\begin{aligned}
& \text {-Mulders Tangerman NPB1995 } \\
& \text {-Goeke Metz Schlegel PLB } 2005 \\
& \text { - Bacchetta et al } 2007 \text { JHEP } \\
& \Phi_{q / P}^{(3)}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\frac{M}{P^{+}}\left[\left(e-\frac{\epsilon_{\perp}^{i j} k_{\perp i} S_{\perp j}}{M} e_{T}^{\perp}\right) \frac{1}{2}-i\left(\lambda_{g} e_{L}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} e_{T}\right) \frac{\gamma^{5}}{2}\right. \\
& +\left(\frac{k_{\perp}^{i}}{M} f^{\perp}-\epsilon_{\perp}^{i j} S_{\perp j} f_{T}^{\prime}-\frac{\epsilon_{\perp}^{i j} k_{\perp j}}{M}\left(\lambda_{g} f_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} f_{T}^{\perp}\right)\right) \frac{\gamma_{i}}{2} \\
& +\left(g_{T}^{\prime} S_{\perp}^{i}-\frac{\epsilon_{\perp}^{i j} k_{\perp j}}{M} g^{\perp}+\frac{k_{\perp}^{i}}{M}\left(\lambda_{g} g_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} g_{T}^{\perp}\right)\right) \frac{\gamma^{5} \gamma_{i}}{2} \\
& \left.+\left(\frac{S_{\perp}^{i} k_{\perp}^{j}}{M} h_{T}^{\perp}\right) \frac{i \gamma^{5} \sigma_{j i}}{4}+\left(h+\lambda_{g} h_{L}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} h^{\perp}\right) \frac{i \gamma^{5} \sigma_{+-}}{4}\right]
\end{aligned}
$$

Factorization at sub-leading power ... 3 partons

- "TMD" region $\quad W_{\mu \nu}=\frac{1}{(2 \pi)^{4}} \sum_{X} \int d^{4} x e^{-i q x}\langle P| J_{\mu}^{\dagger}(0)|h, X\rangle\langle h, X| J_{\nu}(x)|P\rangle$,

$$
J_{\mu}(x)=J_{\mu}^{(2)}(x)+J_{\mu}^{(3)}(x) .
$$

Consider 3 partons entering from one hadron: transverse gluon leads to power suppression of order λ

$$
\begin{aligned}
& W_{\mu \nu}^{(3)}=\frac{1}{(2 \pi)^{4}} \int d^{4} x e^{-i q x}\left\langle P_{1}, P_{2}\right|\left(J_{\mu}^{(3)}(0) J_{\nu}^{(2) \dagger}(x)+J_{\mu}^{(2)}(0) J_{\nu}^{(3) \dagger}(x)\right)\left|P_{1}, P_{2}\right\rangle \\
& W_{\mu \nu}^{(3)}=-\frac{1}{N_{c} C_{F}} \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{p}_{\perp} \delta^{(2)}\left(\boldsymbol{q}_{\perp}+\boldsymbol{k}_{\perp}+\boldsymbol{p}_{\perp} / z\right) \\
& \times\left[\int d k_{g}^{+} \operatorname{Tr}\left[\Phi_{A q / P_{1}}^{i}\left(x, x_{g}, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right) \gamma^{\mu} \Delta_{h / q}\left(z, \boldsymbol{p}_{\perp}, \boldsymbol{S}_{h}\right) \gamma_{i} \frac{\not p-\not \ell_{g}}{\left(p-k_{g}\right)^{2}+i \epsilon} \gamma^{\nu}\right]\right. \\
& \left.+\int d p_{g}^{-} \operatorname{Tr}\left[\Delta_{A h / q}^{i}\left(z, z_{g}, \boldsymbol{p}_{\perp}, \boldsymbol{S}_{h}\right) \gamma^{\nu} \frac{\not k-\not p_{g}}{\left(k-p_{g}\right)^{2}+i \epsilon} \gamma_{i} \Phi_{q / P}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right) \gamma^{\mu}\right]+\text { h.c. }\right]
\end{aligned}
$$

Similar Fierzing algorithm Get factorized Hadronic tensor

DY/SIDIS tree-level diagrams relevant for sub-leading-power observables diagrams "dynamical" qgq contributions

$$
\Phi_{A}^{i}\left(x, x_{g}, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\frac{1}{x_{g} P^{+}} \Phi_{F}^{i}\left(x, x_{g}, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)
$$

Dynamical

$$
\Phi_{A}^{i}\left(x, x_{g}, \boldsymbol{k}_{T}, S\right)
$$

Subleading Quark-Gluon-Quark TMDPDFs

Quark Chirality

SIDIS tree-level diagrams relevant for sub-leading-power observables.
diagrams "dynamical" contributions with

Generalization of

- Mulders Tangerman NPB1995
- Boer Pijlman Mulders NPB 2003
\uparrow Bacchetta et al 2007 JHEP

$$
\begin{aligned}
x_{g} P^{+} & \Phi_{A}^{i}\left(x, x_{g}, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)= \\
\frac{x M}{2}\{ & {\left[\left(\tilde{f}^{\perp}-i \tilde{g}^{\perp}\right) \frac{k_{\perp}^{i}}{M}-\left(\tilde{f}_{T}^{\prime}+i \tilde{g}_{T}^{\prime}\right) \epsilon_{\perp j l} S_{\perp}^{l}\right.} \\
& \left.-\left(\lambda \tilde{f}_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} \tilde{f}_{T}^{\perp}\right) \frac{\epsilon_{\perp j l} k_{\perp}^{l}}{M}-i\left(\lambda \tilde{g}_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} \tilde{g}_{T}^{\perp}\right) \frac{\epsilon_{\perp j l} k_{\perp}^{l}}{M}\right]\left(g_{\perp}^{i j}-i \epsilon_{\perp}^{i j} \gamma_{5}\right) \\
& -\left[\left(\lambda \tilde{h}_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} \tilde{h}_{T}^{\perp}\right)+i\left(\lambda \tilde{e}_{L}^{\perp}-\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} \tilde{e}_{T}^{\perp}\right)\right] \gamma_{\perp}^{i} \gamma_{5}
\end{aligned}
$$

Challenges of SLP/NLPTMDs

Various sources for power suppressed terms identified and discussed in the literature from

Tree level Studies, Mulders, Tangerman (1996), Bacchetta et al. JHEP (2007)

- This includes corrections associated to kinematic prefactors involving contractions between the leptonic and hadronic tensors, referred to as kinematic power corrections
- Another involve subleading terms in quark-quark correlators involving Dirac structures that differ from LP ones referred to as intrinsic power corrections-e e.g. Cahn function $f^{\perp}\left(x, k_{T}\right), e\left(x, k_{T}\right) \ldots$
- Another from hadronic matrix elements of (interaction dependent) quark-gluon-quark operators, referred to dynamic power corrections multi-parton qgq correlators

All three distributions are not required to span the NLP cross section due to EOM

$$
\Phi_{q / P j j^{\prime}}^{\text {int }}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)+\Phi_{q / P j j^{\prime}}^{\mathrm{dyn}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)
$$

${ }^{8}$ Gamberg, Kang, Shao, Terry, Zhao 2022

Next step Factorization: express in terms of good and bad LC fields @ tree level

- Terms of the correlation function, traces of quark correlation functions with the Γ^{a} operators entered,

$$
\Phi^{\Gamma^{a}}\left(x_{1}, \boldsymbol{k}_{T}, \boldsymbol{S}\right) \equiv \operatorname{Tr}\left[\Phi\left(x_{1}, \boldsymbol{k}_{T}, \boldsymbol{S}\right) \Gamma^{a}\right]
$$

where $\quad \Phi_{q / P_{1}, j j^{\prime}}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\langle P, \boldsymbol{S}| \bar{\psi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \psi_{j}^{c}(\xi)|P, \boldsymbol{S}\rangle$

- To separate the contributions of hadronic tensor at LP \& SLP, employ light-cone projections of the Dirac fields, "good" and "bad (power surpressed)" $\quad \lambda=q_{\perp} / Q \quad$ light-cone components

$$
\begin{gathered}
\psi^{c}=\chi^{c}+\phi^{c} \\
\chi^{c}(x)=\frac{\overline{\not h \not h}}{4} \psi^{c}(x), \quad \varphi^{c}(x)=\frac{\not h \bar{h}}{4} \psi^{c}(x)
\end{gathered}
$$

- Upon expressing ψ^{c} in terms of ϕ^{c} and χ^{c} in the correlation function, four field configurations enter into the position space matrix elements,

$$
\langle P, \boldsymbol{S}| \bar{\chi}_{j^{\prime}}^{c} \chi_{j}^{c}|P, \boldsymbol{S}\rangle,\langle P, \boldsymbol{S}| \bar{\varphi}_{j^{\prime}}^{c} \chi_{j}^{c}|P, \boldsymbol{S}\rangle,\langle P, \boldsymbol{S}| \bar{\chi}_{j^{\prime}}^{c} \varphi_{j}^{c}|P, \boldsymbol{S}\rangle, \text { and }\langle P, \boldsymbol{S}| \bar{\varphi}_{j^{\prime}}^{c} \varphi_{j}^{c}|P, \boldsymbol{S}\rangle
$$

EOMs and kinematic (Suppressed) Distributions

- Employ the QCD equations of motion to demonstrate the appearance of the "kinematic sub-leading distributions"

$$
\frac{i \not D_{\perp}(\xi)}{i n \cdot D(\xi)} \frac{\not x}{2} \chi^{c}(\xi)=\varphi^{c}(\xi)
$$

$$
\begin{aligned}
& \Phi_{q / P}^{\mathrm{int}\left[\Gamma^{\mathrm{a}]}\right.}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\left[\langle P, \boldsymbol{S}| \bar{\chi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \varphi^{c}(\xi)|P, \boldsymbol{S}\rangle+\langle P, \boldsymbol{S}| \bar{\varphi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \chi^{c}(\xi)|P, \boldsymbol{S}\rangle\right] \\
& \Phi_{q / P \mathrm{~A}}^{\mathrm{int}\left[\Gamma^{\mathrm{a}}\right]}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\frac{1}{k^{+}} \int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\langle P, \boldsymbol{S}| \bar{\chi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) i D_{\perp}(\xi) \frac{\not x}{2} \chi^{c}(\xi)|P, \boldsymbol{S}\rangle
\end{aligned}
$$

```
\Phi
```

$$
\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\int \frac{d^{4} \xi}{(2 \pi)^{2}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right) \quad\left[\langle P, \boldsymbol{S}| \bar{\chi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \chi_{\text {kin } j}^{c}(\xi)+\bar{\chi}_{\text {kinj }^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \chi_{j}^{c}(\xi)|P, \boldsymbol{S}\rangle\right]
$$

$$
\chi_{\text {kin }}^{c}(\xi)=\frac{\not k_{\perp}}{k^{+}} \frac{\not x}{2} \chi^{c}(\xi)
$$

EOMs and kinematic Suppressed Distributions

- Employ the QCD equations of motion to demonstrate the appearance of the "kinematic sub-leading distributions"

$$
\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}\right)=\sum_{a} \bar{\Gamma}_{j j^{\prime}}^{a} \int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\langle P, \boldsymbol{S}| \bar{\chi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{[a]} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \chi^{c}(\xi)|P, \boldsymbol{S}\rangle
$$

where $\Gamma^{[a]}=\left[\Gamma^{a}, \not \not k_{\perp} \not h / 2 k^{+}\right]$

Subleading fields and correlator(s) Summary

Three possible sub-leading field configurations. They are related through the QCD EOM

$$
\varphi^{c}(x)=\frac{\not h \hbar}{4} \psi^{c}(x) \quad \chi^{c}(x)=\frac{\not \hbar h}{4} \psi^{c}(x) \quad \varphi^{c}(x)=-\frac{\not h}{2} \frac{\not D_{\perp}}{n \cdot D} \chi^{c}(x)
$$

Using properties of the Wilson lines, the relevant collinear functions are given by

$$
\begin{aligned}
& \Phi_{q / P j j^{\prime}}^{\mathrm{int}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\left[\langle P, \mathbf{S}| \bar{\chi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \varphi_{j}^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right] \\
& \Phi_{q / P j j^{\prime}}^{\mathrm{dyn}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\frac{i g}{k^{+}} \int d \eta^{-} \int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right) \\
& \times\left[\langle P, \mathbf{S}| \bar{\chi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\eta) F^{i+}(\eta) \mathcal{U}^{\bar{n}}\left(\eta^{-}, \xi^{-} ; \xi^{+}, \xi_{\perp}\right) \gamma_{i} \frac{\not x}{2} \chi^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right]
\end{aligned}
$$

$$
\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\left[\langle P, \mathbf{S}| \bar{\chi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \frac{i \partial_{\perp}^{i}}{i n \cdot D} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \frac{\not \hbar}{2} \gamma_{i}^{\perp} \chi_{\text {kin } \mathrm{j}}^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right]
$$

All three distributions are not required to span the NLP cross section due to EOM

$$
\Phi_{q / P j j^{\prime}}^{\mathrm{int}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)+\Phi_{q / P j j^{\prime}}^{\mathrm{dyn}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)
$$

[^0]
Subleading fields and correlator(s) Alternative

Three possible sub-leading field configurations. They are related through the QCD EOM

$$
\varphi^{c}(x)=\frac{\not h \hbar}{4} \psi^{c}(x)
$$

$$
\chi^{c}(x)=\frac{\text { 帆 }}{4} \psi^{c}(x)
$$

$$
\varphi^{c}(x)=-\frac{\not h}{2} \frac{\not D_{\perp}}{n \cdot D} \chi^{c}(x)
$$

Using properties of the Wilson lines, the relevant collinear functions are given by

$$
\begin{aligned}
\Phi_{q / P j j^{\prime}}^{\mathrm{int}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right) & =\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\left[\langle P, \mathbf{S}| \bar{\chi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \varphi_{j}^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right] \\
\Phi_{q / P j j^{\prime}}^{\mathrm{dyn}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right) & =\frac{i g}{k^{+}} \int d \eta^{-} \int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right) \\
\times & {\left[\langle P, \mathbf{S}| \bar{\chi}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\eta) F^{i+}(\eta) \mathcal{U}^{\bar{n}}\left(\eta^{-}, \xi^{-} ; \xi^{+}, \xi_{\perp}\right) \gamma_{i} \frac{\not x}{2} \chi^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right] } \\
\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right) & =\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i k \cdot \xi} \delta\left(\xi^{+}\right)\left[\langle P, \mathbf{S}| \bar{\chi}_{j^{\prime}}^{c}(0) \mathcal{U}_{\llcorner }^{\bar{n}}(0) \frac{i \partial_{\perp}^{i}}{i n \cdot D} \mathcal{U}_{\llcorner }^{\bar{n} \dagger}(\xi) \frac{\not \hbar}{2} \gamma_{i}^{\perp} \chi_{\text {kin } j}^{c}(\xi)|P, \mathbf{S}\rangle+\text { h.c. }\right]
\end{aligned}
$$

All three distributions are not required to span the NLP cross section due to EOM

$$
\Phi_{q / P j j^{\prime}}^{\mathrm{int}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)=\Phi_{q / P j j^{\prime}}^{\mathrm{kin}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)+\Phi_{q / P j j^{\prime}}^{\mathrm{dyn}}\left(x, \mathbf{k}_{\perp}, \mathbf{S}\right)
$$

[^1]
Tree level factorization sub-leading power

Combining these contributions and multiplying by leptonic tensor get factorized Cahn and more Includes dynamical "tilde" contributions
Using "intrinsic \& dynamical" basis

$$
\begin{aligned}
F_{\mathrm{DIS}}^{3}\left(x, z, \boldsymbol{P}_{h \perp}\right) & =\mathcal{C}^{\mathrm{DIS}}\left[\frac{\mathcal{q}_{\perp}}{Q} f_{1} D_{1}\right]-\mathcal{C}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} f^{\perp}\right) D_{1}-f_{1}\left(\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} D^{\perp}\right)\right] \\
& -\int \frac{d x_{g}}{x_{g}} \mathcal{C}_{\mathrm{dynx}_{\mathrm{g}}}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} \tilde{f}^{\perp}\right) D_{1}\right]+\int \frac{d z_{g}}{z_{g}} \mathcal{C}_{\mathrm{dynz}_{\mathrm{g}}}^{\mathrm{DIS}}\left[f_{1}\left(\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} \tilde{D}^{\perp}\right)\right]
\end{aligned}
$$

Cahn and more intrinsic \boldsymbol{k}_{T}

Slightly different setup then Bacchetta et al 2007 allows us to check RG consistency Gamberg, Kang, Shao, Terry, Zhao arXiv: e-Print:221.13209

To understand appreciate the subtleties review Tree levelTMD@LP and NLP factorization

In reviewing will remind about the utility of using Fierz decamp \& "good and bad" LC quark fields

Then onto Factorization at NLO address soft factor calculation

TMD factorization at NLO and NLP

$$
q_{T} \sim k_{T} \ll Q
$$

TMD Factorization beyond LO in QCD

\downarrow Collins Soper Sterman NPB 1985

- Ji Ma Yuan PRD PLB ...2004, 2005
- Aybat Rogers PRD 2011
\uparrow Collins 2011 Cambridge Press
\uparrow Echevarria, Idilbi, Scimemi JHEP 2012, ...
\uparrow SCET Becher \& Neubert, 2011 EJPC

$$
\frac{\mathrm{d} \sigma^{W}}{\mathrm{~d} Q^{2} \mathrm{~d} x_{F} \mathrm{~d} p_{\mathrm{T}}^{2}}=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{p}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(x_{F}, b_{T}, Q\right)
$$

$$
\tilde{W}\left(x_{F}, b_{T}, Q\right)=\sum_{j} H_{j \bar{\jmath}}^{\mathrm{DY}}\left(Q, \mu, a_{s}(\mu)\right) \tilde{f}_{j / A}\left(x_{A}, b_{\mathrm{T}} ; \zeta_{A}, \mu\right) \tilde{f}_{\tilde{j} / B}\left(x_{B}, b_{\mathrm{T}} ; \zeta_{B}, \mu\right)
$$

Each factor is regularized where the total cs is independent of of UV and rapidity μ, ζ reg. scales

Rapidity Divergence TMD

TMD factorizationat NLO @ LP

$\frac{\mathrm{d} \sigma^{W}}{\mathrm{~d} Q^{2} \mathrm{~d} x_{F} \mathrm{~d} p_{\mathrm{T}}^{2}}=H_{\text {SIDIS }} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} \frac{\Phi^{[\Gamma]}\left(x, b_{T}\right)}{S\left(b_{T}, y_{1}-(-\infty)\right)} S\left(b_{T}, y_{1}-y_{2}\right) \underbrace{\frac{C^{\left[\Gamma^{\prime}\right]}\left(z, b_{T}\right)}{S\left(b_{T},+\infty-y_{2}\right)}}_{\boldsymbol{\pi}}$.

Pics courtesy of Andrea Simonelli

Renormalization and TMD Evolution－$\{\zeta, \mu\}$

米 Collins Soper Eq．$\frac{\partial \ln \tilde{f}_{j / H}\left(x, b_{T} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{T}, \mu\right)$

$$
\tilde{K}\left(b_{T}, \mu\right) \equiv \frac{1}{2} \frac{\partial}{\partial y_{n}} \ln \frac{S\left(b_{T}, y_{n},-\infty\right)}{S\left(b_{T}, y_{n},-\infty\right)}
$$

来 RGE for C．S．kernel

$$
\frac{d \tilde{K}\left(b_{T} ; \mu\right)}{d \ln \mu}=-\gamma_{k}\left(\alpha_{s}(\mu)\right)
$$

来 RGE for TMD

$$
\frac{d \ln \tilde{f}_{j / H}\left(x, b_{T} ; \mu, \zeta\right)}{d \ln \mu}=-\gamma_{F}\left(\alpha_{s}(\mu), \zeta / \mu\right)
$$

$$
\text { Solve simultaneously and get evolved renormalized TMD } \quad \rightarrow \zeta=Q^{2}, \quad \mu=\mu_{Q} \sim Q
$$

See Marco Radici＇s and Yong Zhao talks

$$
\begin{aligned}
\tilde{f}_{1}\left(x, b_{T}, Q^{2}, \mu_{Q}\right) & \sim\left[\tilde{C}^{f_{1}}\left(x / \hat{x}, \boldsymbol{b}_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, \alpha\left(\mu_{b_{*}}\right)\right) \otimes f_{1}\left(\hat{x}, \mu_{b_{*}}\right)\right] \\
& \times \exp \left[-S_{p e r t}\left(\mu_{b_{*}}\left(b_{T}\right) ; \mu_{b_{*}}, Q^{2}\right)-S_{N P}\left(b_{T}, Q\right)\right]
\end{aligned}
$$

Factorization \& resummation at NLO and NLP

Beyond tree level
Note first attempt Bacchetta Boer Diehl Mulders JHEP 2008

- We perform one loop calculation
- \& attempt to establish renormalization group consistency: Regions hard,soft,collinear

$$
\begin{aligned}
& F_{\mathrm{nIC}}^{3}\left(x, z, \boldsymbol{P}_{h \mid}\right)=H_{\mathrm{nIC}}^{\mathrm{LP}}(Q ; \mu) \mathcal{C}^{\mathrm{DIS}}\left[\frac{q_{\perp}}{Q} f_{1} D_{1} \mathcal{S}^{\mathrm{LP}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\int \frac{d x_{g}}{x_{g}} \mathcal{C}_{\mathrm{dynx}}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} \tilde{f}^{\perp}\right) D_{1}\right]+\int \frac{d z_{g}}{z_{g}} \mathcal{C}_{\mathrm{dynz}}^{\mathrm{DIS}}\left[f_{1}\left(\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} \tilde{D}^{\perp}\right)\right], \begin{array}{l}
\boldsymbol{x}_{g}
\end{array}, Q ; \mu\right) \mathcal{C}^{\mathrm{DIS}}\left[x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} \tilde{f}^{\perp} D_{1} \mathcal{S}^{\mathrm{dyn}}\right] \\
& +\int \frac{d z_{g}}{z_{g}} H_{\mathrm{DIS}}^{\mathrm{dyn}}\left(z_{g}, Q ; \mu\right) \mathcal{C}^{\mathrm{DIS}}\left[\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} f_{1} \tilde{D}^{\perp} \mathcal{S}^{\mathrm{dyn}}\right] .
\end{aligned}
$$

Factorization \& resummation at NLO and NLP

Beyond tree level
Note first attempt Bacchetta Boer Diehl Mulders JHEP 2008

- We perform one loop calculation
\& attempt to establish renormalization group consistency:

Regions hard,soft,collinear

$$
\begin{aligned}
F_{\mathrm{DIS}}^{3}\left(x, z, \boldsymbol{P}_{h \perp}\right)= & H_{\mathrm{DIS}}^{\mathrm{LP}}(Q ; \mu) \mathcal{C}^{\mathrm{DIS}}\left[\frac{q_{\perp}}{Q} f_{1} D_{1} \mathcal{S}^{\mathrm{LP}}\right] \\
& -H_{\mathrm{DIS}}^{\mathrm{int}}(Q ; \mu) \mathcal{C}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} f^{\perp} D_{1}-\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} f_{1} D^{\perp} \mathcal{S}^{\mathrm{int}}\right]\right. \\
& -\int \frac{d x_{g}}{x_{g}} H_{\mathrm{DIS}}^{\mathrm{dyn}}\left(x_{g}, Q ; \mu\right) \mathcal{C}^{\mathrm{DIS}}\left[x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} \tilde{f}^{\perp} D^{\mathcal{S}^{\mathrm{dyn}}}\right] \\
& +\int \frac{d z_{g}}{z_{g}} H_{\mathrm{DIS}}^{\mathrm{dyn}}\left(z_{g}, Q ; \mu\right) \mathcal{C}^{\mathrm{DIS}}\left[\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} f_{1} \tilde{D}^{\perp} \mathcal{S}^{\mathrm{dyn}}\right.
\end{aligned}
$$

- $H^{L P}, H^{\text {int }}$ and $H^{\text {dynam }}$ represent LP, intrinsic NLP, and dynamic NLP hard functions.
- Additionally, SLP, Sint and Sdyn denote the LP, intrinsic sub-leading power, and dynamic sub-leading power soft function
- NB if soft factors are different universality of TMDs breaks down. Global analysis w/ NLP observables hopeless

NLO-calculation-factorization
 Necessary but not sufficient condition to establish factorization

Recipe

-Calculate: soft, collinear (and anti), \& hard -Renormalize

- Exploit properties of good and bad fields \& power counting
-Check renormalization group consistency

NLO Ingredients soft factor

The soft region

The soft function is generated through the emissions of soft gluons in the partonic cross section

$$
\begin{aligned}
& \hat{\mathcal{S}}^{\mathrm{LP}}(b ; \mu, \nu)=Z_{S \mathrm{LP}}(b ; \mu, \nu) \mathcal{S}^{\mathrm{LP}}(b ; \mu, \nu) \\
& \hat{\mathcal{S}}^{\mathrm{NLP}}(b ; \mu, \nu)=Z_{S \mathrm{NLP}}(b ; \mu, \nu) \mathcal{\delta}^{\mathrm{NLP}}(b ; \mu, \nu) \\
& \frac{\partial}{\partial \ln \mu} \delta^{\mathrm{NLP}}(b, \mu, \nu)=\Gamma_{S N L P}^{\mu} \mathcal{S}^{\mathrm{NLP}}(b, \mu, \nu) \\
& \frac{\partial}{\partial \ln \nu} \delta^{\mathrm{NLP}}(b, \mu, \nu)=\Gamma_{S N L P}^{\nu} \mathcal{\delta}^{\mathrm{NLP}}(b, \mu, \nu)
\end{aligned}
$$

$$
\Gamma_{S \text { int }}^{\nu}=\frac{\partial}{\partial \ln \nu} Z_{S N L P}(b ; \mu, \nu)
$$

Gamberg, Kang, Shao, Terry, Zhao arXiv: e-Print:221.13209

Soft emission from sub-leading fields vanish \rightarrow NLO + NLP soft function is half the LP one

$$
\Gamma_{\mathcal{S i n t}}^{\mu}=\frac{1}{2} \Gamma_{\delta \mathrm{LP}}^{\mu}, \quad \Gamma_{\delta \mathrm{int}}^{\nu}=\frac{1}{2} \Gamma_{\delta \mathrm{LP}}^{\nu}
$$

NLO Ingredients collinear factor

Diagrams associated with the evolution of the collinear region

$+$

$+$

Renormalize TMDs: soft \& UV subtraction

$$
\hat{\Phi}^{\left[\Gamma^{a}\right]}\left(x, \boldsymbol{b}, \boldsymbol{S} ; \mu, \zeta / \nu^{2}\right)=Z_{\Gamma^{a} \Gamma^{b}}\left(b, \mu, \zeta / \nu^{2}\right) \Phi^{\left[\Gamma^{b}\right] 0}\left(x, \boldsymbol{b}, \boldsymbol{S} ; x P^{+}\right)
$$

$$
\Gamma_{3}^{\nu}=\frac{\partial}{\partial \ln \nu} Z_{N L P}(b ; \mu, \nu)
$$

NLO Ingredients collinear factor

Differences from LP TMDs

Study the interaction of the sub-leading fields with the Wilson lines

$$
\begin{gathered}
\frac{\not \ell}{2} \varphi_{c}(k)=0 \\
\Gamma_{3}^{\nu}=\frac{\partial}{\partial \ln \nu} Z_{N L P}(b ; \mu, \nu)
\end{gathered}
$$

Can show that these interactions vanish trivially

Resulting in, $\quad \Gamma_{3 \text { int }}^{\nu}(\mu, \nu, \zeta)=\frac{1}{2} \Gamma_{2}^{\nu}(\mu, \nu, \zeta)$

Anomalous dimension matrices

Evolution equations naturally enter as matrices due to mixing

$$
\frac{\partial}{\partial \ln \mu}\left[\begin{array}{c}
\Phi^{[h]} \\
\Phi^{\left[h \gamma \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{i}+\gamma^{5}\right]} \\
\Phi^{[1]} \\
\Phi^{\left[\gamma^{5}\right]} \\
\Phi^{\left[\gamma^{5}\right]} \\
\Phi^{\left[\gamma^{i} \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{i j} \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{+-} \gamma^{5}\right]}
\end{array}\right]=\boldsymbol{\Gamma}^{\mu}\left[\begin{array}{c}
\Phi^{[\gamma]]} \\
\Phi^{\left[h \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{l}+\gamma^{5}\right]} \\
\Phi^{[1]} \\
\Phi^{\left[\gamma^{5}\right]} \\
\Phi^{\left[\gamma^{5}\right]} \\
\Phi^{\left[\gamma^{2} \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{l m} \gamma^{5}\right]} \\
\Phi^{\left[i \sigma^{+-} \gamma^{5}\right]}
\end{array}\right]
$$

We find operator mixing in the Collins-Soper equation. Seen before in ${ }^{10-11}$

$$
\mathrm{LP} \text { to } \mathrm{LP}
$$

Necessary condition rapidity RG Consistency

Review Leading power

$$
\begin{array}{r}
f_{1}\left(x, b ; \mu, \zeta_{1}\right)=f_{1}\left(x, b ; \mu, \zeta_{1} / \nu^{2}\right) \sqrt{\mathcal{S}^{\mathrm{LP}}(b ; \mu, \nu)} \\
D_{1}\left(z, b ; \mu, \zeta_{2}\right)=D_{1}\left(z, b ; \mu, \zeta_{2} / \nu^{2}\right) \sqrt{\mathcal{S}^{\mathrm{LP}}(b ; \mu, \nu)}
\end{array}
$$

$$
\Gamma_{2}^{\nu}+\frac{1}{2} \Gamma_{S}^{\nu}=0, \quad \Gamma_{2}^{\nu}+\frac{1}{2} \Gamma_{S}^{\nu}=0
$$

Next to leading power

$$
\begin{aligned}
& -H_{\mathrm{DIS}}^{\mathrm{int}}(Q ; \mu) \mathcal{C}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} f^{\perp} D_{1}-\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} f_{1} D^{\perp}\right) \mathcal{S}^{\mathrm{int}}\right] \\
& \quad i b^{\mu} M^{2} f^{\perp(1)}\left(x, b ; \mu, \zeta_{1}\right)=i b^{\mu} M^{2} f^{\perp(1)}\left(x, b ; \mu, \zeta_{1} / \nu^{2}\right) \sqrt{\mathcal{S}^{\mathrm{int}}(b ; \mu, \nu)}
\end{aligned}
$$

$$
\Gamma_{3 \text { int }}^{\nu}+\frac{1}{2} \Gamma_{S \text { int }}^{\nu}=0 \quad \text { Non-trivial result }
$$

However for cross section

$$
D_{1}\left(z, b ; \mu, \zeta_{2}\right)=D_{1}\left(z, b ; \mu, \zeta_{2} / \nu^{2}\right) \sqrt{\mathcal{S}^{\mathrm{LP}}(b ; \mu, \nu)}
$$

$$
D_{1}\left(z, b ; \mu, \zeta_{2}\right)=D_{1}\left(z, b ; \mu, \zeta_{2} / \nu\right) \sqrt{S^{i n t}} ? ?
$$

$$
\Gamma_{2 \mathrm{mod}}^{\nu}+\frac{1}{2} \Gamma_{\mathcal{S} \mathrm{int}}^{\nu}=0
$$

Necessary condition rapidity RG Consistency

Next to leading power $\frac{d \sigma}{d \ln \nu}=0 \& \frac{d \sigma}{d \ln \mu}=0$

$$
-H_{\mathrm{DIS}}^{\mathrm{int}}(Q ; \mu) \mathcal{C}^{\mathrm{DIS}}\left[\left(x \frac{\boldsymbol{k}_{\perp} \cdot \hat{x}}{Q} f^{\perp} D_{1}-\frac{\boldsymbol{p}_{\perp} \cdot \hat{x}}{z Q} f_{1} D^{\perp}\right)\left(S_{!!}^{\mathrm{int}}\right)\right.
$$

$$
\Gamma_{\mathcal{S} \text { int }}^{\nu}+\Gamma_{3 \text { int }}^{\nu}+\Gamma_{2 \mathrm{mod}}^{\nu}=0 \quad \text { Have shown } \ldots
$$

Problem: Breakdown of universality different soft function for D_{1} ?!

$$
D_{1}\left(z, b ; \mu, \zeta_{2}\right)=D_{1}\left(z, b ; \mu, \zeta_{2} / \nu\right) \sqrt{S^{\text {int }}} \quad!!\quad D_{1}\left(z, b ; \mu, \zeta_{2}\right)=D_{1}\left(z, b ; \mu, \zeta_{2} / \nu^{2}\right) \sqrt{\mathcal{S}^{\mathrm{LP}}(b ; \mu, \nu)}
$$

Other contributions? Ingredients soft factor

The soft region

The soft function is generated through the emissions of soft gluons in the partonic cross section

Progress Report Stay tuned

Contributions to the soft factor after applying the eikonal approximation and including the effect from the transverse momentum contributions from the quark propagators.

NLO Ingredients collinear factor

Contributions to the collinear factor from kinematic power corrections ie including the effect from the transverse momentum contributions from the transverse momentum of the quark propagators

$$
\Gamma_{3 \text { int }}^{\nu}(\mu, \nu, \zeta)=\Gamma_{2}^{\nu}(\mu, \nu, \zeta) \quad ?
$$

Necessary condition RRG Consistency
 $$
\frac{d \sigma}{d \ln \nu}=0 \quad \& \quad \frac{d \sigma}{d \ln \mu}=0
$$

Taking into account this aforementioned modification of leading distribution by the presence of the sub-leading field, we explore iff there are other contributions to rescue the renormalization group consistency at one loop for RRG
$\Gamma_{\mathcal{S} \text { int }}^{\nu}+\Gamma_{3 \text { int }}^{\nu}+\Gamma_{2 \text { mod }}^{\nu}=0$
$\Gamma_{3 \text { int }}^{\nu}(\mu, \nu, \zeta)+\Gamma_{3 \perp}^{\nu}(\mu, \nu, \zeta)+\Gamma_{2 \bmod }^{\nu}(\mu, \nu, \zeta)+\Gamma_{2 \perp}^{\nu}(\mu, \nu, \zeta)+\Gamma_{\delta \text { int }}^{\nu}+\Gamma_{\delta \perp}^{\nu}=0 ? ?$

Necessary condition RG Consistency

$$
\Gamma_{3 \text { hard }}^{\mu}(\mu, \nu, \zeta)+\Gamma_{3 \text { int }}^{\mu}(\mu, \nu, \zeta)+\Gamma_{2 \bmod }^{\mu}(\mu, \nu, \zeta)+\Gamma_{\delta \text { int }}^{\mu}=0
$$

Summary

We explore sub-leading power $\Lambda_{Q C D} / Q$ TMDs in the context of factorization theorem

- NLP factorization based on "TMD formalism"
-extend the tree level Amsterdam formalism and beyond leading order
CSS, Ji Ma Yuan, Abyat Rogers, framework vs. SCET and Background Field Methods
- Revisit "Cahn effect" \& matching related to early picture of importance intrinsic \boldsymbol{k}_{T}
- "Intrinsic"NLP TMDs related thru EOM in terms "kinematic" छ̌ "dynamical"
- Consider RG consistency of matching to collinear factorization
- Bacchetta, Boer, Diehl, Mulders JHEP 2008, Bacchetta et al. PLB 2019
- Report progress in this necessary condition NLP factorization (not yet sufficient)
- In doing so, we provide the basis for performing global analysis \& phenomenology of one the earliest observables used to study intrinsic 3-D momentum structure of the nucleon-Opportunity for SoLID study of nucleon/pion

Thank You

[^0]: ${ }^{8}$ Gamberg, Kang, Shao, Terry, Zhao 2022

[^1]: ${ }^{9}$ Ebert, Gao, Stewart 2021

