

Zhiwen Zhao Duke University

SoLID Collaboration

Workshop on "SoLID Opportunities and Challenges of Nuclear Physics at the Luminosity Frontier"

June 17-20, 2024 Argonne National Laboratory

Outline

- SoLID Introduction
- Nucleon 3-D momentum tomography with SIDIS
- SoLID SIDIS program
- Summary

SoLID@12-GeV JLab: QCD at the intensity frontier

SoLID will *maximize* the science return of the 12-GeV CEBAF upgrade by **combining...**

High Luminosity 10³⁷⁻³⁹/cm²/s [>100x CLAS12][>1000x EIC]

Large Acceptance

Full azimuthal ϕ coverage

Research at **SoLID** will have the *unique* capability to explore the QCD landscape while complementing the research of other key facilities

- Pushing the phase space in the search of new physics and of hadronic physics (<u>PVDIS</u>)
- 3D momentum imaging of a relativistic strongly interacting confined system (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (proton mass)

Synergizing with the pillars of EIC science (proton spin and mass) through high-luminosity valence quark tomography and precision J/ψ production near threshold

SoLID whitepaper: J. Phys. G: Nuclear and Particle Physics **50**, 110501 (2023) 12GeV physics: Progress in Particle and Nuclear Physics **127**, 103985 (2022)

Jefferson Lab

3

SoLID in Hall A

Plan for installing SoLID in Hall A with other equipment moved out of the way.

Nucleon Structure from 1D to 3D – orbital motion

5-D Wigner distribution

X.D. Ji, PRL91, 062001 (2003); Belitsky, Ji, Yuan, PRD69,074014 (2004)

Generalized parton distribution (GPD) Transverse momentum dependent parton distribution (TMD) Image from J. Dudek et al., EPJA 48,187 (2012)

Soll Jefferson Lab 5

Haiyan Gao

TMDs – confined motion inside the nucleon

Leading twist: 8 TMDs

→ Nucleon Spin→ Quark Spin

TMDs – confined motion inside the nucleon

h_{1T} — tensor charge (lattice

QCD calculations)

Connected to nucleon beta decay and EDM

Sivers

 Nucleon spin - quark orbital angular momentum (OAM) correlation – zero if no OAM (model dependence)

Pretzelosity

- Interference between components with OAM difference of 2 units (i.e., s-d, p-p) (model dependence)
- Signature for relativistic effect

Separation of Collins, Sivers and Pretzelosity through angular dependence

SIDIS SSAs depend on 4-D variables (x, Q², z, P_T) and small asymmetries demand **large acceptance + high luminosity** allowing for measuring symmetries in 4-D binning with precision!

 $A_{UT}(\phi_h, \phi_S) = \frac{1}{P_{t,pol}} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$

ollins

Sivers

Leading twist formulism (higher-twist terms can be included)

$$=A_{UT}^{Collins}\sin(\phi_h+\phi_S)+A_{UT}^{Pretzelosity}\sin(3\phi_h-\phi_S)+A_{UT}^{Sivers}\sin(\phi_h-\phi_S)$$

$$\propto \langle \sin(\phi_h + \phi_S) \rangle_{UT} \propto h_1 \otimes H_1^{\perp} \checkmark$$

Collins fragmentation function from e⁺e⁻ collisions

 $(2\pi \text{ azimuthal coverage})$

 $A_{UT}^{Pretzelosity} \propto \langle \sin(3\phi_h - \phi_S) \rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \checkmark$

 $\propto \langle \sin(\phi_h - \phi_S) \rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$

Unpolarized fragmentation function

Multi-dimensional binning with precision – reduces systematics, constrain models, forms of TMDs, disentangle correlations, isolate phase-space region with large signal strength (HERMES, COMPASS)

A. Airapetian et al., arXiv:2007.07755

~100 bins TSSA

State-of-the-art from CLAS 12

/F_{UU} 0.12

______/ 0.08 0.06

0.1

0.04 0.02

-0.02

 $P_{T} = 0.16 \text{ GeV}$

multi-dimensional binning with precision reduces systematics, constrain models, forms of TMDs, disentangle correlations, isolate phasespace region with large signal strength (CLAS12)

First multidimensional, high precision measurements of semi-inclusive π + beam single spin asymmetries from the proton over a wide range of kinematics

S. Diehl et al. (CLAS Collaboration), Phys. Rev. Lett. 128, 062005 (2022)

 $P_{T} = 0.63 \text{ GeV}$

bin 9

bin

 $P_{T} = 0.39 \text{ GeV}$

SoLID SIDIS Configuration

https://solid.jlab.org/experiments.html

SoLID SIDIS He3 Setup • E12-10-006: SIDIS pion on transversely polarized ³He, 90 days, rated A • E12-11-007: SIDIS pion on longitudinally polarized ³He, 35 days, rated A • SIDIS kaon and dihadron as run groups

Polarized lumi $\sim 1e^{36}/cm^2/s$ Unpolarized lumi ~1e³⁷/cm²/s

Coverage

- Polar angle: e^{-} 8-24 deg, π^{-}/π^{+} 8-15deg
- Azimuthal angle: full

Detection

- e- at forward angle with EC and Cerenkov to reject pions
- e- above 3GeV detected at large angle with EC to reject pions
- pions detected at forward angle with TOF and Cerenkov to suppress kaons

SoLID SIDIS NH3 Setup

• E12-10-008: SIDIS pion on transversely polarized proton (NH₃), 120 days, **rated A**

SIDIS kaon and dihadron as run groups

Detection is similar to He3 setup

Coverage is similar to He3 setup except some distortion from the target field

5T transverse target field High radiation sheet of flame areas need to be cut away or shielded

Polarized lumi ~1e³⁵/cm²/s Unpolarized lumi ~6e³⁵/cm²/s

e- acceptance shown π^- acceptance is similar π^+ acceptance is reversed along phi=0 plane

vertex θ (deg)

acceptance by LA

/ertex P (GeV)

acceptance by FA

acceptance by FA

SoLID SIDIS Kinematic Coverage

large acceptance and high luminosity enable wide coverage in all 4D kinematic bins with well controlled systematics

Z. Ye et al, Phys. Lett. B 767, 91 (2017)

SoLID-SIDIS Measurements

- Deep inelastic kinematics at 8.8 GeV and 11 GeV incident electron beam energies
 - Coincidence detection of electrons and charged pions
 - Good electron PID and moderate charged pion PID
- Single and double spin asymmetries and flavor separation
 - ³He target with both transverse and longitudinal in-beam polarizations of ~60%
 - NH3 target with transverse in-beam polarizations of ~80%
 - Electron beam with polarization ~85% allows both single and double spin asymmetries
- Small asymmetries, 4-dimensional binning and high precision require high luminosity (polarized) ~ 10³⁶ cm⁻² s⁻¹ (n) and ~ 10³⁵ cm⁻² s⁻¹ (p), and large acceptance
- Extracting various azimuthal angular dependences and suppressing systematic uncertainties require full azimuthal coverage $A^{h}_{UT}(\phi_{h},\phi_{S}) = \frac{2}{P_{T}^{1} + P_{T}^{2}} \cdot \frac{\sqrt{N_{1}(\phi_{h},\phi_{S})N_{2}(\phi_{h},\phi_{S}+\pi)} \sqrt{N_{1}(\phi_{h},\phi_{S}+\pi)N_{2}(\phi_{h},\phi_{S})}}{\sqrt{N_{1}(\phi_{h},\phi_{S})N_{2}(\phi_{h},\phi_{S}+\pi)} + \sqrt{N_{1}(\phi_{h},\phi_{S}+\pi)N_{2}(\phi_{h},\phi_{S})}}$
- Four-dimensional binning in (x, z, Q² and P_T): requires reasonably good momentum and angular resolutions
 - GEM detectors provide excellent tracking capability
- The capability to handle high rates and backgrounds associated with high luminosity and large acceptance
 - DAQ rate: less than 100 KHz

SoLID-SIDIS: Systematic Uncertainties

• *Raw asymmetries*: control the syst. uncertainties corresponding to detector efficiencies (time dependent part) by monitoring the single e^{-} , π^{+} , π^{+} rates

• Target polarization: knowledge of the target pol. at 3% level \rightarrow a 3% rel. syst. uncertainty of the SSAs

• *Random coincidence*: obtained from the signal to noise ratio and background within 6 ns timing window

• *Diffractive meson*: the pion contribution from the diffractive production decay estimated based on HERMES tuned Pythia at SoLID SIDIS kinematics

- *Radiative corrections*: use both traditional and factorized method
- Detector resolution: estimated based on the track fitting studies

• *Nuclear effects*: estimated based on theoretical calculations of the neutron SSA extraction at SoLID SIDIS kinematics

SoLID-SIDIS: Radiative Correction

Radiative Correction being one of dominant sources of systematic uncertainties, due to radiation of photons off leptons

$\ell(k_1,\xi) + N(P,\eta) \to \ell'(k_2) + h(P_h) + X(\tilde{P}_X) + \gamma(k)$

Traditional

- Three additional photonic variables introduced
 - ϕ_k to be angle between
- $(k_1,\,k_2)$ and $(k,\,q)$ planes

$$R = 2k \cdot P, \quad \tau = \frac{k \cdot q}{k \cdot P}, \quad \phi_k$$

I. Akushevich et al. PRD, 100, 033005 (2019)

Factorized

- Simultaneously treats QED and QCD effects on the same footing.
- Good approximation for QED radiative contributions by collinear factorization

T. Liu et al JHEP11(2021)157

$\sqrt{s} \; (\text{GeV})$	x_B	$Q^2 \; ({\rm GeV}/c)^2$	z_h	RC ratio	
Jefferson Lab Kinematics					
3.2	0.32	2.3	0.55	1.025	
4.9	0.48	8	0.375	1.025	
6.7	0.48	15	0.375	1.025	
EIC Kinematics					
140	0.01	9	0.5	1.042	
140	0.01	25	0.5	1.038	
140	0.01	100	0.5	1.06	

https://indico.bnl.gov/event/18419/contributions/80386/attachments/49832/85265/Jia_Khachatryan_ SIDIS-RC.pdf

SoLID SIDIS Projection

Transversity and Tensor Charge

Transversity distribution

$$h_1$$
 $(Collinear & TMD)$

- Chiral-odd, unique for the quarks
- No mixing with gluons, simpler evolution effect
- Tensor charge:

$$\begin{aligned} \left\langle \mathbf{P}, \mathbf{S} | \overline{\psi}_q i \sigma^{\mu\nu} \psi_q | \mathbf{P}, \mathbf{S} \right\rangle &= g_T^q \overline{u}(\mathbf{P}, \mathbf{S}) i \sigma^{\mu\nu} u(\mathbf{P}, \mathbf{S}) \\ g_T^q &= \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx \end{aligned}$$

- A fundamental QCD quantity dominated by valence quarks
- Precisely calculated on the lattice
- Difference from nucleon axial charge is due to relativity
- SoLID measurements allows for highprecision test of LQCD predictions
- Global analysis including LQCD (PRL 120 (2018) 15, 152502

g _T Flavor separation	World data	SoLID
u/d value	0.548 / -0.382	0.547 / -0.376
u/d error	0.112 / 0.177	0.021 / 0.014

SoLID projection: statistical and systematic uncertainties included

Tensor charge also connected to neutron and quark EDM, unique opportunity for SM tests and new physics

$$d_n = g_T^d d_u + g_T^u d_d + g_T^s d_s$$

H. Gao, T. Liu and Z. Zhao, PRD 97, 074018 (2018)

19

Transversity and Tensor Charge

Transversity distribution

$$h_1$$
 $(Collinear & TMD)$

- Chiral-odd, unique for the quarks
- No mixing with gluons, simpler evolution effect
- Tensor charge:

$$\begin{split} \left< \mathbf{P}, \mathbf{S} | \overline{\psi}_q i \sigma^{\mu\nu} \psi_q | \mathbf{P}, \mathbf{S} \right> &= g_T^q \overline{u} (\mathbf{P}, \mathbf{S}) i \sigma^{\mu\nu} u (\mathbf{P}, \mathbf{S}) \\ g_T^q &= \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx \end{split}$$

- A fundamental QCD quantity dominated by valence quarks
- Precisely calculated on the lattice
- Difference from nucleon axial charge is due to relativity
- SoLID measurements allows for highprecision test of LQCD predictions
- Global analysis including LQCD (PRL 120 (2018) 15, 152502

Combining E12-10-006 & E12-11-108

SoLID projection: statistical and systematic uncertainties included (shifted for visibility)

J. Cammarota et al, PRD 102, 054002 (2020) (JAM20+) L. Gamberg et al., PRD 106, 034014 (2022) (JAM22)

Confined motion inside the nucleon

Confined motion inside the nucleon

 $\frac{k_x \, k_y}{M^2} \, x \, h_{\hbox{$\frac{1}{T}$}}(x, \, k_{\overline{T}}^2)$

Pretzelocity distribution

- Chiral-odd, no gluon analogy
- Quadrupole modulation of parton density in the distribution of transversely polarized quarks in a transversely polarized nucleon
- Measuring the difference between helicity and transversity (relativistic effects)

Parametrization by C. Lefky et al., PRD 91, 034010 (2015)

h_{1T}[⊥]

SoLID projection with transversely polarized n and p data Relation to OAM (canonical)

$$L_{z}^{q} = -\int \mathrm{d}x \mathrm{d}^{2}\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,k_{\perp}) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x)$$

Combining E12-10-006 & E12-11-108

Unpolarized Cross Section off He3

Projected π + unpolarized cross section errors with and without azimuthal terms. ~2000 bins in 5D

• A naive probe for the azimuthal modulation effect

 $A(1-B\cdot cos(\varphi_h)-C\cdot cos(2\varphi_h))$

• We can also fit the the pseudo data to get transverse momentum width

- SoLID: a large acceptance device which can handle very high luminosity to allow full exploitation of JLab12 potential pushing the limit of the luminosity frontier highlighted in 2023 NSAC LRP and facility review
- SoLID TMD program using SIDIS process is rich and vibrant with unprecedented high precision data in 4D/5D bins to constrain models and examine LQCD, perfect for global fitting
- Synergy with EIC and extend into 22GeV

Thank you!

supported in part by the U.S. Department of Energy under contract number DE-FG02-03ER41231

