Combined Study of QED and QCD for Lepton-Hadron Scattering including DIS, SIDIS, and Parity Violating Processes

June 19, 2024 In collaboration with: Justin Cammarota(Coll. William and Mary), Jianwei Qiu(Jefferson Lab), Kazuhiro Watanabe(Seikei U.)

Jia-Yue Zhang Jefferson Lab

1. Introduction

2. DIS

3. SIDIS

4. PVDIS

5. Summary

Introduction DIS SIDIS PVDIS Summary

Lepton-Hadron Scattering and Hadron Structure

- Virtual photon as a hard probe of hadron structure;
- Multiple processes: DIS, SIDIS, exclusive scattering, etc;
- Main source of information about the parton structure of hadrons;
- Hard collision induces both QCD and QED radiation;
- QCD factorization have been very successful in treating QCD radiations;
- The precision of the hard probe depends on how precise we were able to treat collision-induced QED radiation.

Precision Standard Model Measurements

Young, Carlini, Thomas, Roche, PRL2007

- SM is very successful;
- Hard to find BSM by increasing energy;
- High precision measurements are needed;
- → Systematic improvement of radiation corrections could be important.

1. Introduction

2. DIS

3. SIDIS

4. PVDIS

5. Summary

Inclusive *ep* deep inelastic scattering

Due to QED radiation from the incoming/outgoing leptons, the momentum transfer q is not fixed. Hadron is probed by the virtual photon with momentum *q̂* instead of q.

$$q \to \hat{q}$$

$$Q^2 := -q^2 \to \hat{Q}^2 := -\hat{q}^2$$

$$x_B = \frac{Q^2}{2P \cdot q} \to \hat{x}_B := \frac{\hat{Q}^2}{2P \cdot \hat{q}}$$

• Measurement with fixed Q^2 and x_B could cover a kinematic range of \hat{Q}^2 and \hat{x}_B even with the approximation of one-photon exchange.

$$x_B \to \hat{x}_B \in [x_B, 1], \quad Q^2 \to \hat{Q}^2 \in \left[\frac{Q^2(1-y)}{1-x_B y}, \frac{Q^2}{1-y+x_B y}\right], \quad y := \frac{P \cdot q}{P \cdot l}$$

Traditionally, a simple RC factor is applied to correct the measured cross section to the Born level.

$$\sigma_{\text{measured}} = \text{RC} \otimes \sigma_{\text{Born}}$$
 6/26

Joint QED and QCD Factorization For DIS

• Factorization Formula for the Inclusive DIS $e(l)p(P) \rightarrow e(l') + X$ at leading power: *Liu*, *Melnitchouk*, *Qiu*, *Sato*, *PRD2021*; *JHEP2021*

$$E'\frac{\mathrm{d}\sigma}{\mathrm{d}^{3}l'} \approx \frac{1}{2s} \sum_{ija} \int_{\zeta_{\min}}^{1} \frac{\mathrm{d}\zeta}{\zeta^{2}} \int_{\xi_{\min}}^{1} \frac{\mathrm{d}\xi}{\xi} \frac{D_{e/j}\left(\zeta,\mu^{2}\right) f_{i/e}\left(\xi,\mu^{2}\right)}{\int_{x_{\min}}^{1} \frac{\mathrm{d}x}{x}} \frac{f_{a/p}(x,\mu^{2})}{f_{a/p}(x,\mu^{2})} \hat{H}_{ia \to jX}\left(\xi l, xP, \frac{l'}{\zeta}, \mu^{2}\right)$$

- $D_{e/j}$: universal lepton fragmentation function (LFF),
- $f_{i/e}$: universal lepton/parton distribution function (LDF/PDF),
- $\hat{H}_{ia \rightarrow jX}$: perturbative calculable **IR&CO-safe** hard scattering coefficient

$$\hat{H}_{ia \to jX}\left(\xi l, xP, \frac{l'}{\zeta}, \mu^2\right) = \sum_{m,n} \alpha^m \alpha_s^n \hat{H}_{ia \to jX}^{(m,n)}\left(\xi l, xP, \frac{l'}{\zeta}, \mu^2\right)$$

The cross section without QED radiation can be recovered by setting

$$D_{e/j}(\zeta,\mu^2) = \delta(1-\zeta), \quad f_{i/e}(\xi,\mu^2) = \delta(1-\xi), \quad m = 0 \text{ for } \sum_{m,n} \delta(1-\zeta)$$

Introduction DIS SIDIS PVDIS Summary

Factorized QED Contributions to DIS

 Model distributions -analytic and everyone can test and verify without numerical complications
 LDF&LFF:

$$f_{e/e}(x) \approx D_{e/e}(x) = \frac{x^a (1-x)^b}{B(a+1,b+1)}$$

O PDF:

$$f_{q/p}(x) \approx \begin{cases} N_q \frac{x^{-1/2}(1-x)^{7/2}}{B(1/2,9/2)} & \text{valence quark,} \\ \\ N_q \frac{x^{-3/2}(1-x)^5}{B(-3/2,6)} & \text{sea quark,} \\ \\ N_u = 2, \quad N_d = 1, \quad N_s = \frac{1}{2} \end{cases}$$

Resummed Collinear Contribution:

Recall
$$\hat{Q}^2 \in \left[\frac{Q^2(1-y)}{1-x_By}, \frac{Q^2}{1-y+x_By}\right].$$

- More than 1/2 cross sections are from $\hat{Q}^2 \leq Q^2$.
- Very significant events are NOT from the region where $\hat{Q}^2 \sim Q^2$ when x_B is small.

Resummed Collinear Contribution

Introduction DIS SIDIS PVDIS Summary

NLO QED Corrections

Joint QED and QCD factorization allows a systematic expansion in α_s and α .

$$\begin{aligned} \hat{\sigma}^{(1)} &= D_{e/e}^{(0)} \otimes f_{e/e}^{(0)} \otimes f_{q/p}^{(0)} \otimes \hat{H}_{eq \to eX}^{(1)} + D_{e/e}^{(1)} \otimes f_{e/e}^{(0)} \otimes f_{q/p}^{(0)} \otimes \hat{H}_{eg \to eX}^{(0)} + D_{e/e}^{(0)} \otimes f_{e/e}^{(1)} \otimes f_{q/p}^{(0)} \otimes \hat{H}_{eq \to eX}^{(0)} \\ &+ D_{e/e}^{(0)} \otimes f_{e/e}^{(0)} \otimes f_{q/p}^{(1)} \otimes \hat{H}_{eq \to eX}^{(0)} + D_{e/e}^{(0)} \otimes f_{e/e}^{(0)} \otimes f_{q/p}^{(1)} \otimes \hat{H}_{qq \to eX}^{(0)} \end{aligned}$$

Hadron's parton distributions are not pure QCD.

 \rightarrow Matching condition of hard scattering coefficient:

$$\hat{H}_{eq \to eX}^{(1)} = \hat{\sigma}^{(1)} - D_{e/e}^{(1)} \otimes \hat{H}_{eq \to eX}^{(0)} - f_{e/e}^{(1)} \otimes \hat{H}_{eq \to eX}^{(0)} - f_{q/p}^{(1)} \otimes \hat{H}_{eq \to eX}^{(0)} - f_{\gamma/p}^{(1)} \otimes \hat{H}_{\gamma q \to eX}^{(0)}$$

NLO QED Corrections

Remark

 $p_t^2 = Q^2(1-y)$

1. Introduction

2. DIS

3. SIDIS

4. PVDIS

5. Summary

No Simple Radiative Correction for SIDIS

Radiative effects in the processes of hadron electroproduction

I. Akushevich, N. Shumeiko, A. Soroko

National Center of Particle and High Energy Physics, 220040 Minsk, Belarus

Received: 17 March 1999 / Revised version: 18 June 1999 / Published online: 28 September 1999

Abstract. An approach to calculate radiative corrections to the unpolarized cross section of semi-inclusive electroproduction is developed. Explicit formulae for the lowest order QED radiative correction are presented. A detailed numerical analysis is performed with the kinematics of experiments with fixed targets.

- Radiative correction to SIDIS $e + N \rightarrow e + \gamma + h(p) + X$ vs hardronic transverse momentum p_{t} ;
- $\sqrt{S}=7.19 \text{ GeV}, x=0.15, Q^2=4 \text{ GeV}^2.$
- Dashed curves: Mulders-Tangerman model

$$b\exp\left(-bp_t^2\right), \quad b:=R^2/z^2$$

• Solid curves:
$$(a + bz + p_t^2)^{-c-dz}$$

 RC factor depends on the hadronic input that we want to probe. 14/26

SIDIS

DIS

SIDIS

Summary

Introduction

Assuming one-photon exchange, SIDIS is described by 18 structure functions, which are defined in photon-hadron frame. *Bacchetta, Diehl, Goeke, Metz, Mulders, Schlege, JHEP2007*

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}y\mathrm{d}\psi\mathrm{d}z\mathrm{d}\phi_{h}\mathrm{d}P_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ &+ \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos^{2}\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin^{2}\phi_{h}} \right] \\ &+ S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] + |\mathbf{S}_{\perp}| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} \right) \right. \\ &+ \varepsilon\sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h}+\phi_{S})} + \varepsilon\sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h}-\phi_{S})} \right] \\ &+ |\mathbf{S}_{\perp}|\lambda_{e} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{LT}^{\cos\phi_{S}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h}-\phi_{S})} \right] \right\}, \end{split}$$

Introduction DIS SIDIS PVDIS Summary

Hybrid Factorization for SIDIS Liu, Melnitchouk, Qiu, Sato, PRD2021; JHEP2021

- In the presence of QED radiation, momentum direction of exchanged photon is not fixed.
- When scattered lepton and hadron are back-to-back, TMD factorization is applicable.

Observation QED broadening for lepton \ll typical parton transverse momentum.

- \rightarrow Hybrid factorization for SIDIS in the two-scale regime.
 - collinear factorization for the two leptons
 - TMD factorization for the two hadrons

Hybrid Factorization for SIDIS Liu, Melnitchouk, Qiu, Sato, PRD2021; JHEP2021

Factorization Formula for SIDIS

$$E_{\ell'}E_{P_h}\frac{\mathrm{d}^6\sigma_{\ell(\lambda_\ell)P(S)\to\ell'P_hX}}{\mathrm{d}^3\ell'\,\mathrm{d}^3P_h}\approx\sum_{ij\lambda_k}\int_{\zeta_{\min}}^1\frac{\mathrm{d}\zeta}{\zeta^2}\,D_{e/j}(\zeta)\int_{\xi_{\min}}^1\mathrm{d}\xi\,f_{i(\lambda_k)/e(\lambda_\ell)}(\xi)\\\times\left[E_{k'}E_{P_h}\frac{\mathrm{d}^6\hat{\sigma}_{k(\lambda_k)P(S)\to k'P_hX}}{\mathrm{d}^3k'\,\mathrm{d}^3P_h}\right]_{k=\mathcal{E}\ell,k'=\ell'/\zeta}$$

Introduction DIS SIDIS PVDIS Summary
$$F_{UU}$$

$$\frac{\mathrm{d}\sigma^h_{\mathrm{SIDIS}}}{\mathrm{d}x_B\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P^2_{h\,T}} = \int_{\zeta_{\mathrm{min}}}^1 \mathrm{d}\zeta \int_{\xi_{\mathrm{min}}}^1 \mathrm{d}\xi \, D_{e/e}(\zeta) f_{e/e}(\xi) \frac{\hat{x}_B}{x_B\xi\zeta} \frac{(2\pi)^2\alpha}{\hat{x}_B\hat{y}\hat{Q}^2} \frac{\hat{y}}{2(1-\hat{\varepsilon})} F^h_{UU}(\hat{x}_B,\hat{y},\hat{z},\hat{P}_{h\,T}).$$

Unpolarized structure function F^{h}_{UU}

$$F_{UU}^{h} = x_{B} \sum_{q} e_{q}^{2} \int \mathrm{d}^{2} \boldsymbol{p}_{T} \mathrm{d}^{2} \boldsymbol{k}_{T} \delta^{(2)}(\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{q}_{T})$$
$$\times f_{q/N}(x_{B}, \boldsymbol{p}_{T}^{2}) D_{h/q}(z, \boldsymbol{k}_{T}^{2}), \quad \boldsymbol{q}_{T} := \frac{\boldsymbol{P}_{hT}}{z}.$$

1. Introduction

2. DIS

3. SIDIS

4. PVDIS

5. Summary

Summary

Parity Violating Deep Inelastic Scattering

Parity Violating Lepton-Spin Asymmetry

PVDIS

$$A_{\mathsf{PVE}} := \frac{\sigma_{e(\lambda=1)p \to eX} - \sigma_{e(\lambda=-1)p \to eX}}{\sigma_{e(\lambda=1)p \to eX} + \sigma_{e(\lambda=-1)p \to eX}} =: \frac{\Delta \sigma_{ep \to eX}}{\sigma_{ep \to eX}}$$

Previous framework is hard to extend to full EW&QCD factorization directly.

For SoLID, Z/W is too heavy to radiate. EW&QCD factorization might be applicable at heavy gauge boson limit.

$$E_{l'} \frac{\mathrm{d}\sigma_{lP \to l'X}}{\mathrm{d}^{3}l'} \approx \int_{\zeta_{\min}}^{1} \frac{\mathrm{d}\zeta}{\zeta^{2}} D_{e/e}\left(\zeta,\mu^{2}\right) \int_{\xi_{\min}}^{1} \mathrm{d}\xi f_{e(\lambda_{k})/e(\lambda_{l})}\left(\xi,\mu^{2}\right) \left(E_{k'} \frac{\mathrm{d}\hat{\sigma}_{kP \to k'X}}{\mathrm{d}^{3}k'}\right)_{k=\xi l, k'=l'/\zeta}$$

One-Vector-Boson Exchange

• Only interference between γ and Z exchange contributes to A_{PVE} at LO.

$$\frac{\mathrm{d}\Delta\hat{\sigma}}{\mathrm{d}\hat{y}} = \frac{2\pi\alpha^2 e_q}{m_Z^2 \sin^2\theta_{\mathsf{W}} \cos^2\theta_{\mathsf{W}}\hat{y}} \left\{ e_q \sin^2\theta_{\mathsf{W}} \left[1 + (1-\hat{y})^2 \right] + I_3^q \left[2\sin^2\theta_{\mathsf{W}} \left(1 - (1-\hat{y})^2 \right) - 1 \right] \right\}$$

Resummed Collinear Contribution

Recall

$$f_{e/e}(x) \approx D_{e/e}(x) = \frac{x^a(1-x)^b}{B(a+1,b+1)}$$

Introduction DIS SIDIS PVDIS

 \rightarrow Matching condition of hard scattering coefficient:

Summary

- No divergence when intermediate photon is collinear to the initial parton.
- \rightarrow different from the pure QED case for inclusive DIS
- Conservation of momentum allows expansion of amplitude in m_Z before phase space integration.

NLO

Joint factorization has been confirmed to NLO by verifying the cancellation of CO divergences.

Next: Finishing up the complete NLO hard part for EW+QCD.

1. Introduction

2. DIS

3. SIDIS

4. PVDIS

5. Summary

Summary

- Factorization approach to include both QCD and QED radiative contributions provides a consistent and controllable approximation to high-energy lepton-hadron scattering processes.
- Physical observables are factorized into universal lepton/parton distribution/fragmentation functions and perturbatively calculable hard parts which is IR and CO safe for both QCD and QED.
- No artificial scale introduced for treating QED radiation, other than the standard factorization scale.
- NLO corrections can be calculated in a systematic way for both QCD and QED radiative corrections.
- Joint QED and QCD factorization can help control and qualify the systematic errors for PVDIS.

Thank you