PARTON DISTRIBUTIONS AND PVDIS IN SOLID

PAUL E REIMER

19 June 2024 Argonne National Laboratory Lemont, IL

The question is not about parton distribution uncertainties in 2024, but rather what these uncertainties will be in 203x.

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. This work was partially supported under grant DE-AC02-06CH11357 from the US Department of Energy, Office of Nuclear Physics

$$\begin{aligned} \mathbf{PVDIS \ MEASUREMENT} \\ \sigma^{l} \propto \left| \mathcal{M}_{\gamma} + \mathcal{M}_{PV}^{l} \right|^{2} & \sigma^{r} \propto \left| \mathcal{M}_{\gamma} + \mathcal{M}_{PV}^{r} \right|^{2} \\ A_{LR}^{PV} &= \left| \frac{\sigma^{l} - \sigma^{r}}{\sigma^{l} + \sigma^{r}} \approx \frac{\mathcal{M}_{PV}^{l} - \mathcal{M}_{PV}^{r}}{\mathcal{M}_{\gamma}} \right| \\ &\approx \left| - \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \right) \frac{2C_{1u} - C_{1d}\left(1 + R_{s}\right) + Y\left(2C_{2u} - C_{2d}\right)R_{v}}{5 + R_{s}} \right| \\ R_{s}\left(x\right) &= 2\frac{s\left(x\right) + \bar{s}\left(x\right)}{u\left(x\right) + d\left(x\right)} \xrightarrow{x \to 11} 0 \\ R_{v}\left(x\right) &= \frac{u_{v}\left(x\right) + d_{v}\left(x\right)}{u\left(x\right) + d\left(x\right)} \xrightarrow{x \to 1} 1 \end{aligned}$$

WILS DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SOLID PVDIS ASYMMETRY UNCERTAINTY

Asymmetry Uncertainty (%) vs. x (60 days at each energy, P=85%)

$\mathbf{A}_{\mathsf{LR}} \, \mathsf{vs} \, \mathbf{x}$

Calculate A_{LR} and associated PDF uncertainties for 2 Q² bins, 11 GeV beam

A_{LR} VS X (**P**ERCENTAGE **U**NCERTAINTY)

Uncertainties at high-x < 0.5% In general uncertainties < 1%

R_s and R_v vs x

 $A_{\rm PV}^{\rm DIS} = -\left(\frac{3G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{2C_{\rm 1u} - C_{\rm 1d}\left(1 + R_s\right) + Y\left(2C_{\rm 2u} - C_{\rm 2d}\right)R_v}{5 + R_s}$

$$0.85 \lesssim R_v \left(x, Q^2 \right) = \frac{u_v \left(x, Q^2 \right) + d_v \left(x, Q^2 \right)}{u \left(x, Q^2 \right) + d \left(x, Q^2 \right)} \le 1$$

$$0.34 \lesssim Y \lesssim 1.0 \text{ and } (2C_{2u} - C_{2d}) \approx 0.038$$

That is, in terms of

- δA_{PV} , δR_v will have little impact
- $\delta(2C_{2u} C_{2d})$, δR_v is still important

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

R_s and R_v vs x

 $A_{\rm PV}^{\rm DIS} = -\left(\frac{3G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{2C_{\rm 1u} - C_{\rm 1d}\left(1 + R_s\right) + Y\left(2C_{\rm 2u} - C_{\rm 2d}\right)R_v}{5 + R_s}$

$$0 \le R_s \left(x, Q^2 \right) = 2 \frac{s \left(x, Q^2 \right) + \bar{s} \left(x, Q^2 \right)}{u \left(x, Q^2 \right) + d \left(x, Q^2 \right)} \lesssim 0.05$$
$$C_{1d} \approx 0.35$$

That is, in terms of

- δA_{PV} , δR_s will have little impact
- $\delta(2C_{2u} C_{2d})$, δR_s is still important

Generative of U.S. Department of U.S. Department of Energy laboratory wanaged by UChicago Argonne, LLC

R_s vs x

Primary difference is the treatment of ATLAS 7 TeV W & Z measurements

Rs 6.500000 CT18

CT18NLO CT18ZNLO LEGRANGE MULTIPLIER SCAN

NEW ATLAS W & Z DATA

ATLAS, arXiv 2404.06204, submitted to EPJC.

PDF set	$W^- ightarrow \ell^- u$	$W^+ ightarrow \ell^+ u$	$Z \to \ell \ell$			
$\sigma_{\rm fid}(\sqrt{s} = 5.02 {\rm TeV}) [{\rm pb}]$						
Data	1384 ± 16	2228 ± 25 333.0 ± 4.1				
CT18	$1360 \pm 10 \text{ (scale)} ^{+30}_{-40} \text{ (PDF)}$	$2200 \pm 10 \text{ (scale)} ^{+40}_{-70} \text{ (PDF)}$	$320 \pm 1 \text{ (scale)} ^{+5}_{-9} \text{ (PDF)}$			
MSHT20	1351 $^{+5}_{-6}$ (scale) $^{+22}_{-23}$ (PDF)	$2180 \pm 10 \text{ (scale)} ^{+30}_{-40} \text{ (PDF)}$	$324 \pm 1 \text{ (scale)}_{-5}^{+4} \text{ (PDF)}$			
NNPDF31	$1381 \pm 6 \text{ (scale)} \pm 16 \text{ (PDF)}$	2232 $^{+8}_{-9}$ (scale) ± 25 (PDF)	$329 \pm 1 \text{ (scale)} \pm 4 \text{ (PDF)}$			
$\sigma_{\rm fid}(\sqrt{s} = 13 {\rm TeV}) [{\rm pb}]$						
Data	3486 ± 38	4571 ± 49	780.3 ± 10.4			
CT18	3410_{-20}^{+40} (scale) $^{+60}_{-100}$ (PDF)	4460 $^{+40}_{-30}$ (scale) $^{+80}_{-130}$ (PDF)	748 ⁺⁵ ₋₄ (scale) ⁺¹⁸ ₋₂₅ (PDF)			
MSHT20	3400_{-20}^{+40} (scale) $^{+40}_{-60}$ (PDF)	4460 $^{+40}_{-30}$ (scale) $^{+60}_{-70}$ (PDF)	763 $^{+6}_{-4}$ (scale) $^{+9}_{-12}$ (PDF)			
NNPDF31	3450^{+40}_{-20} (scale) ± 30 (PDF)	4510_{-30}^{+40} (scale) ± 40 (PDF)	769 $^{+6}_{-4}$ (scale) ± 7 (PDF)			

NEW CMS W & Z DATA

CMS, http://cds.cern.ch/record/2868090 (2023)

	v S				
	Data	NNPDF3.1	NNPDF4.0	CT18	MSHT20
$W^+ \to \ell^+ \nu$	$2476\pm2_{stat}\pm8_{syst}\pm47_{lum}$	2476^{+24}_{-24}	2513^{+18}_{-18}	2431^{+41}_{-41}	2421^{+28}_{-28}
$W^- ightarrow \ell^- ar{ u}$	$1525 \pm 2_{stat} \pm 5_{syst} \pm 29_{lum}$	1519^{+18}_{-18}	1543^{+9}_{-9}	1505^{+25}_{-25}	1490^{+18}_{-18}
$W^\pm \to \ell^\pm \nu$	$4001 \pm 3_{stat} \pm 10_{syst} \pm 76_{lum}$	3995^{+38}_{-38}	4056^{+22}_{-22}	3936^{+64}_{-64}	3911_{-46}^{+46}
$Z \to \ell^+ \ell^-$	$319.9 \pm 0.9_{stat} \pm 1.2_{syst} \pm 6.2_{lum}$	$319.5^{+3.7}_{-3.7}$	$325.2^{+1.8}_{-1.8}$	$310.2_{-4.9}^{+4.9}$	$314.0^{+3.5}_{-3.5}$
W^+/W^-	$1.623 \pm 0.003_{stat} \pm 0.007_{syst}$	$1.631\substack{+0.016\\-0.016}$	$1.628^{+0.013}_{-0.013}$	$1.615_{-0.014}^{+0.014}$	$1.625\substack{+0.008\\-0.008}$
W^{\pm}/Z	$12.51\pm0.04_{stat}\pm0.03_{syst}$	$12.51\substack{+0.12\\-0.12}$	$12.47\substack{+0.08\\-0.08}$	$12.69^{+0.13}_{-0.13}$	$12.46\substack{+0.05\\-0.05}$

 $\sqrt{s} = 5.02 \text{ TeV}$

$\sqrt{s} =$	13	TeV
--------------	----	-----

-	Data	NNPDF3.1	NNPDF4.0	CT18	MSHT20
$W^+ \to \ell^+ \nu$	$5318\pm4_{stat}\pm18_{syst}\pm86_{lum}$	5061^{+62}_{-62}	5118^{+45}_{-45}	5003^{+89}_{-89}	4991^{+57}_{-57}
$W^- ightarrow \ell^- ar{ u}$	$4039\pm4_{stat}\pm14_{syst}\pm66_{lum}$	3871_{-45}^{+45}	3930^{+28}_{-28}	3783^{+65}_{-65}	3816_{-43}^{+43}
$W^\pm \to \ell^\pm \nu$	$9360\pm10_{stat}\pm30_{syst}\pm160_{lum}$	8930^{+90}_{-90}	9050^{+60}_{-60}	8790^{+150}_{-150}	8810^{+100}_{-100}
$Z \to \ell^+ \ell^-$	$775 \pm 2_{stat} \pm 3_{syst} \pm 13_{lum}$	743^{+18}_{-18}	754^{+6}_{-6}	719^{+16}_{-16}	734^{+8}_{-8}
W^+/W^-	$1.317 \pm 0.002_{stat} \pm 0.005_{syst}$	$1.307^{+0.017}_{-0.017}$	$1.302^{+0.012}_{-0.012}$	$1.322^{+0.013}_{-0.013}$	$1.308^{+0.009}_{-0.009}$
W^{\pm}/Z	$12.08 \pm 0.03_{stat} \pm 0.03_{syst}$	$12.02\substack{+0.28\\-0.28}$	$12.00\substack{+0.11\\-0.11}$	$12.21\substack{+0.16 \\ -0.16}$	$12.00\substack{+0.07\\-0.07}$

SUMMARY: PDF UNCERTAINTIES

- Under control at high-x
- $\delta R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + d(x)}$ small
- $\delta R_s(x) = \frac{s(x) + \bar{s}(x)}{u(x) + d(x)}$ new data
- Lattice contributions

The question is not about parton distribution uncertainties in 2024, but rather what these uncertainties will be in 203x.

PDF uncertainties appear to be under control We can sing like Cicadias!

