

Future J/ψ Production on Nuclear Targets with SoLID

Sangbaek Lee

SoLID Opportunities and Challenges of Nuclear Physics at the Luminosity Frontier, Argonne National Laboratory, 6/17/2024–6/22/2024

Contents

- Physics Motivation of coherent J/ψ electroproduction on Nuclear Target
- Measurement of the coherent J/ψ electroproduction off ⁴He with SoLID
- Recoil detector and target options
- Summary

Nuclear charge distribution and form factor

Spatial charge distribution $\rho(r)$

- Theoretical prediction
- Matching with the experimental results

A. Camsonne et al., Phys. Rev. Lett. 112, 132503 (2014)

- Measurement of elastic scattering
- Hall A measurement around the second diffraction minimum!

Location of diffraction minimum characterizes the size of the charge distribution.

GRAND STREET OF U.S. DEPARTMENT OF U.S. Department of Energy laborator managed by UChicago Argonne, LLC

FT

FT⁻¹

Nuclear Gravitational Form Factors

Spatial gluon distribution $\rho(r)$

Gravitational Form Factors $A(t), D(t), \ldots$

- Theoretical prediction
- Matching with the experimental results
- c.f.) D. Hackett's talk on Monday for nucleon

Measurement of coherent J/ψ production c.f.) S. Joosten's talk on Monday for nucleon

Location of diffraction minimum will characterize the size of the gluon distribution. Direct probe of gluonic structure inside the nuclei.

c.f.) I. Zahed's talk on Monday morning

Recent Studies on Nuclear GFFs

FIG. 3. The *D* gravitational form factor of the skyrmions with B = 4, 5, 6, and 7, normalized by *B*, for the $\lambda = 0$ case.

A. G. Martín-Caro, M. Huidobro, and Y. Hatta, PRD 108, 034014 (2023)

Recent Studies on Coherent J/ψ Production Cross Section

VM production cross section from the GFF

$$\begin{split} \frac{d\sigma}{dt} = & \frac{\alpha_{\rm EM} e_c^2}{4(s - M_{H_e}^2)^2} \frac{\left(16\pi\alpha_S\right)^2}{3M_{J/\psi}^3} |\psi_{\rm NR}(0)|^2 |G(t,\xi)|^2 \\ = & 70.2 \frac{1}{(s - M_{4H_e}^2)^2} |G(t,\xi)|^2 [\rm{nb}/\rm{GeV}^2] \\ = & 70.2 \frac{1}{(s - M_{4H_e}^2)^2} \frac{4}{\xi^4} |A_{^4He}(t) + \xi^2 D_{^4He}(t)|^2 [\rm{nb}/\rm{GeV}^2] \end{split}$$

Y. Guo, X. Ji, Y. Liu, PRD 103,9, 096010 (2021) Y. Guo, X. Ji, Y. Liu, and J. Yang, PRD 108, 3, 034003 (2023) F. He and I. Zahed, Private Communication See I. Zahed's talk on Monday

Nuclear effect @ EIC kinematics

V. Guzey, M.Rinaldi, S.Scopetta, M. Strikman, and M. Viviani, PRL 129, 242503 (2022)

Future J/ψ Production on Nuclear Targets with SoLID

SoLID is a large acceptance spectrometer that effectively measures J/ψ production off nuclear targets

- Scattered electron
- e^+e^- from J/ψ decays
- Recoil detection is important for coherent processes

SoLID can measure the reaction at high luminosity

- Large statistics allows fully exclusive measurements
- An ideal place to measure J/ψ production on nuclear targets!

From SoLID White Paper (2022)

Measurement of the coherent J/ψ electroproduction off ⁴He with SoLID

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

⁴He, from Nucleon to Spin Zero Nuclei

• Spin-0 \rightarrow simpler structure for the electromagnetic and gravitational

$$\begin{split} p',s'|T^{a}_{\mu\nu}|p,s\rangle = \bar{u}(p') \Big[\frac{1}{2} \gamma_{\{\mu} P_{\nu\}} A_{a}(t) + \frac{i P_{\{\mu} \sigma_{\nu\}\rho} q^{\rho}}{4M_{N}} B_{a}(t) + \frac{q_{\mu} q_{\nu} - g_{\mu\nu} q^{2}}{M_{N}} C_{a}(t) + M_{N} \bar{C}_{a}(t) g_{\mu\nu} \Big] u(p) \\ = \bar{u}(p') \left[\frac{P_{\mu} P_{\nu}}{M_{N}} A(t) + \frac{i P_{\{\mu} \sigma_{\nu\}\rho} q^{\rho}}{2M_{N}} J(t) + \frac{q_{\mu} q_{\nu} - g_{\mu\nu} q^{2}}{4M_{N}} D(t) + M_{N} \bar{C}^{a}(t) \Big] u(p) \right] \end{split}$$

$$\rightarrow \langle p' | T^a_{\mu\nu}(x) | p \rangle = \left[2P_{\mu}P_{\nu}A^a(t) + \frac{1}{2}(q_{\mu}q_{\nu} - g_{\mu\nu}q^2)D^a(t) + 2M_N^2\bar{C}^a(t) \right]$$
$$\sum \bar{C}_a(t) = 0, \ a = g, u, d, \dots$$

- Light nuclei
 - has a comparable mass to the J/ψ (⁴He: 3.73 GeV, J/ψ : 3.1 GeV)
 - large enough first diffraction minimum

a

Recent ϕ Production Results

- ϕ production can also probe gluons
- Gluon distribution extraction from LEPS at SPring8 (2018)
- No direct measurement around the diffraction minimum of $F_c(t)$
- Probing this region with J/ψ channel is essential for studying the gluon distributions inside ⁴He nucleus.

ENERGY U.S. Department of Energy laborator managed by U.Chicano Argonne U.C

R. Wang et al, Phys. Rev. C 109 (2024), L012201

Coherent J/ψ **Production on** ⁴He – Phase Space

Measurement with photon energy E_{γ} is important. = detection of low energy scattered electron is required.

- Tagging the recoil is required.
 - PID to veto incoherent background
 - Energy (momentum) measurement to determine *t*
 - Detection of low energy, forward angle recoil is the most important.
- Either of following is necessary.
 - e^+e^- detection. Better event selection, BR $(J/\psi \rightarrow e^+e^-) = 5.971\%$
 - *e*' detection. Better resolution in E_{γ}
- SoLID is a unique place allows the full exclusive measurement at high luminosity.

Recoil Detector and Target Options

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Existing Target and Recoil Detector Options

Gaseous ⁴He target

ENERGY U.S. Department of Energy laborator mapaged by UChicago Argonne, U.C.

- O(10²¹ cm⁻²) per nucleus (ex) CLAS12: 5 atm, 40 cm)
- Compatible conventional recoil detectors
 - RTPC: Used for the BoNUS12 Experiment
 - ALERT: Run Group L starts soon in Hall B
 - Being installed for the upcoming runs in Hall B
 - Good energy resolution, PID for ⁴He detection
 - Fast detector, trigger to veto background
 - LOI12-24-011 submitted to PAC 52
 - CLAS12's solenoidal field is 5 T.

I. Albayrak et al., RTPC NIM paper (2024)

From ALERT Run Group Proposal (W. Armstrong et al, arXiv:1708.00891)

LHe Active Target with SNSPD

- Liquid ⁴He emits 60–100 nm, prompt scintillation lights. delay time ~ 5 ns
- Superconducting Nanowire Single Photon Detector (SNSPD) is a cryogenic photon sensor w/ fast-timing, high efficiency, low timing jitter high granularity, little dark counts
- liquid ⁴He transparent to its own prompt scintillation
- no optical surfaces between scintillator and sensor
- can immerse the sensor in LHe
- can detect scintillation light from O(10–100) MeV recoil
- thin screens to block scintillation from the beam (ex) Kapton)

15

 \rightarrow Liquid ⁴He Active Target

RGY U.S. Department of Energy laborator managed by UCbicago Argonne ULC

Tomas Polakovic

Whitney Armstrong

Prediction with SoLID and LHe Active Target

- Left: allowed phase space of ⁴He at generator level when $e^{i}e^{+}e^{-}$ are within SoLID acceptance.
- Right: acceptance corrected yield for different t, E_{γ} bins
- Assumed flat 50% efficiency and 5% momentum resolution on recoils (θ >15°)
- Needs further study on the active target acceptance.

ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

• Challenge is tagging the low energy recoil at forward angle.

Other Related Physics Programs in 12 GeV Program

- LOI12-24-011 (CLAS12 + ALERT)
 - Coherent J/ψ production on ⁴He, working on the full proposal
- E12-12-006 (SoLID)
 - J/ψ production on p
- LOI12-20-003 (SoLID)
 - Incoherent J/ψ production on D (PAC 48)
- E12-10-006A, E12-11-007, LOI12-16-007 (SoLID)
 - Physics cases with the ³He target with SoLID
- C12-23-009 (GlueX)
 - Incoherent J/ψ on ⁴He

Summary

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Summary

- Energy momentum tensor and Gravitational Form Factor provides an elegant framework to study gluon distributions inside the hadron. Measurement of J/ψ production around the diffraction minima plays a central role in characterizing the gluon distribution relative to charge in the nucleus.
- Case study of ⁴He measurement, with an emphasis on diffraction minimum search was discussed, with a few realistic target and recoil detector configurations.
- VM production on nuclear target is an important science case, and SoLID is the ideal place to study this reaction.
 Not limited to, but starting with J/ψ on ⁴He, the measurement of VM on a nuclear target is a nice scientific case to study the gluon distributions inside the nuclei.

