

THE STRANGE MECHANICAL STRUCTURE OF THE PROTON

HENRY KLEST

SoLID Workshop June 2024

We know that the proton mechanical structure is strange,

but how STRANGE is it?

MOTIVATION

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

$$\begin{split} \langle p', \vec{s}' | T_a^{\mu\nu} | p, \vec{s} \rangle &= \overline{u}(p', \vec{s}') \left[A_a(t) \, \frac{P^{\mu} P^{\nu}}{m_N} + D_a(t) \, \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m_N} + \bar{C}_a(t) \, m_N \, g^{\mu\nu} \right. \\ &+ J_a(t) \, \frac{P^{\{\mu} i \sigma^{\nu\}\lambda} \Delta_{\lambda}}{m_N} - S_a(t) \, \frac{P^{[\mu} i \sigma^{\nu]\lambda} \Delta_{\lambda}}{m_N} \right] u(p, \vec{s}), \end{split}$$

MOTIVATION

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

$$\begin{split} \langle p', \vec{s}' | T_a^{\mu\nu} | p, \vec{s} \rangle &= \overline{u}(p', \vec{s}') \left[A_a(t) \, \frac{P^{\mu} P^{\nu}}{m_N} + D_a(t) \, \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m_N} + \bar{C}_a(t) \, m_N \, g^{\mu\nu} \right. \\ \left. + J_a(t) \, \frac{P^{\{\mu} i \sigma^{\nu\}\lambda} \Delta_{\lambda}}{m_N} - S_a(t) \, \frac{P^{[\mu} i \sigma^{\nu]\lambda} \Delta_{\lambda}}{m_N} \right] u(p, \vec{s}), \end{split}$$

 D-term at zero momentum transfer represents a fundamental property of the proton, on par with charge, spin, and mass.

MOTIVATION

- The D-term provides a gateway for extraction of various mechanical properties of the proton, including:
 - Pressure distribution*
 - Mechanical radius*
 - Normal & shear force distributions

*only defined for the total D-term, not individual partonic components

HOW DO WE MEASURE IT?

The total D-term is related to the partonic D-terms by a simple sum rule:

$$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$$

- Different processes provide insights into the various partonic D-terms
- Only know total D-term once all the partonic components are known!

$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$

Gluons: Accessible via near-threshold production of J/ψ and Υ

$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$

Up & down quarks: Accessible via DVCS cross section & beam-spin asymmetries

$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$

Strange quarks: Accessible via ?

WHO CARES ABOUT D_s?

- At first glance, D_s should be small
- However, large-N_c predicts that the D-term is "flavor-blind", i.e. D_u ~ D_d despite their different number densities

10

- D_u ~ D_d is supported by lattice results
- Extending this argument, could $D_u \sim D_d \sim D_s$?
- Calculation by Won et al. in the χQSM suggests that D_u ~ D_d ~ 2D_s

This would make D_s a non-negligible contributor to the total D-term, and thus necessary for a full extraction of many of the mechanical properties of the proton!

WHO CARES ABOUT D_s?

- On the other hand, the lattice results by Hackett et al. show that D_s is consistent with zero
- Uncertainties are still large, but the results do not exclude *positive* values of D_s
- D_s > 0 suggests the intriguing possibility that strange quarks exert forces in opposite direction to up & down quarks!

	Dipole	z-expansion
	D_i	D_i
u	-0.56(17)	-0.56(17)
d	-0.57(17)	-0.56(17)
s	-0.18(17)	-0.08(17)
u+d+s	-1.30(49)	-1.20(48)
g	-2.57(84)	-2.15(32)
Total	-3.87(97)	-3.35(58)

ACCESSING THE STRANGENESS D-TERM

- Information on strangeness in the valence region of the proton is limited in general
 - Disentangling it from up & down requires use of specialized processes, e.g. W/Z exchange or kaon SIDIS
- Recently, Hatta & Strikman proposed that *near-threshold electroproduction of \u03c6 mesons* could provide sensitivity to the strangeness D-term
 - Utilized a novel OPE framework that applies in the near-threshold region (unlike the collinear framework)

This is the only known process to access this potentially important piece of the sum rule!

Figure 2: Theoretical predictions for $d\sigma/d|t|$ at $Q^2 = 3.4 \text{ GeV}^2$ and W = 2.2 GeV with different assumptions for $D_s(0)$. In this kinematic range $t_{\min} \approx 0.7 \text{ GeV}^2$. It can be seen that the introduction of a non-zero $D_s(0)$ has a large impact on the shape and size of the cross section.

HALL C LOI

- To this end, we put a letter of intent to perform a measurement of exclusive production at Q² ~ 3.5 GeV² and W ~ 2.2 GeV²
 - Cross section so near to the threshold is very small, need high luminosity!
- Use the excellent resolution of the Hall C spectrometers to pick out the \$\phi\$ peak above a large physics background
 - Background is irreducible unless additional particles can be detected
 - ~30 PAC days required to achieve reasonable precision on \$\phi\$ yield in multiple |t| bins

(c) $0.953 < |t| < 1.0155 \text{ GeV}^2$

(d) $1.0155 < |t| < 1.078 \text{ GeV}^2$

- Estimated cross section uncertainty per point is ~10%
- Largest uncertainty from background subtraction

Projected results show good sensitivity to D_s, on par with the lattice precision!

REALITY CHECK

- The reality is (as always) that it's not so simple!
- Other physics processes can contribute to ϕ electroproduction
 - This will dilute the sensitivity to the D-term
- Needs more phenomenological input before we can really claim an extraction of D_s
 - E.g. calculation of gluon exchange contribution within the same framework
- Additional caveats:
 - Calculation wants $Q^2 \gg |t|$
 - For |t| ~ 1 GeV² is Q² ~ 3.5 GeV² high enough?
 - Non-linear behavior observed in the photoproduction cross section for W < 2.4 GeV, resonances?

Strange exchange (sensitive to D_s)

Pomeron exchange (insensitive to D_s)

Two gluon exchange (insensitive to D_s)

NEXT STEPS: SOLID

- Explore SoLID's capabilities to measure exclusive φ at higher Q²
- Large acceptance
 - Means & decay products can be measured directly
 - Background can be substantially reduced
 - More statistics & continuous kinematic coverage for multidimensional measurement

16

PARTICLE DISTRIBUTIONS

- Generated Kinematics:
 - 1.96 < W < 2.4 GeV
 - $Q^2 > 3.5 \text{ GeV}^2$
 - $|t| < 4 \text{ GeV}^2$
- The most important region is low-t, where the proton momenta are low
- \$\$\phi\$ takes most of the momentum of the virtual photon
 - Produced roughly back-to-back to the scattered electron

U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

17

SOLID ANALYSIS STRATEGY

- How much information we need to reconstruct these exclusive φ events?
- Option 1: Fully exclusive reconstruction
 - Require $e + p + K^+ + K^-$ (or $e + p + h^+ + h^-$)
- Option 2: One missed particle
 - -e+p+K or e+2K
 - Use missing mass to reconstruct the remaining particle
 - Resolution on M_x is not great
- Option 3: Full missing mass
 - Only reconstruct e + p

SOLID ANALYSIS STRATEGY

How much information we need to reconstruct these exclusive φ events?

Option 1: Fully exclusive reconstruction

- Require $e + p + K^+ + K^-$ (or $e + p + h^+ + h^-$)

A te

Assume this technique for all that follows

- Option 2: One missed particle
 - e + p + K or e + 2K
 - Use missing mass to reconstruct the remaining particle
 - Resolution on M_x is not great
- Option 3: Full missing mass
 - Only reconstruct e + p

TRIGGER STRATEGY

- Cannot use J/ψ or TCS triggers
- H(e, e'p) channel isn't enough to reconstruct a ϕ on its own
 - Don't lose anything by requiring a triple coincidence in the trigger
- Trigger on electron at large angle + two charged hadrons at forward angles
 - Detected $e + p + K^+ + K^-$ rate from signal ϕ events is ~10 Hz
 - Large angle electron trigger threshold of 3 GeV
 - Going from 2.5 to 3 GeV reduces photon rate by a factor of 4.4 with respect to the J/ψ number of ~400 kHz

$$R_{\text{Trig.}} = (R_{\pi,FA} + R_{p,FA} + R_{\gamma,FA}) *$$

$$(R_{\pi,FA} + R_{p,FA} + R_{\gamma,FA}) * T_{Window} *$$

$$(R_{e,LA} + R_{\gamma,LA} + R_{h,LA}) * T_{Window}$$
Where R is the rate of triggers

I	Process	Rate	Rate
		Forward	Large
		angle 11 GeV	angle 11 GeV
si	ngle e^-	340 kHz	35.0 kHz
high er	nergy photon	$7.5 \mathrm{~MHz}$	$0.4 \mathrm{~MHz}$
si	ngle π^+	$11.0 \mathrm{~MHz}$	$0.25 \mathrm{~MHz}$
si	ngle π^-	$7 \mathrm{~MHz}$	$0.18 \mathrm{MHz}$
sing	gle proton	$3.3 \mathrm{~MHz}$	$0.19 \mathrm{MHz}$

Table 2: Single rates for charged particles and high-energy photons detected at forward and large angles with an 11 GeV beam. The high energy photon cut-off is 0.7 (2.5) GeV at forward (large) angle.

TRIGGER STRATEGY

- Cannot use J/ψ or TCS triggers
- H(e, e'p) channel isn't enough to reconstruct a ϕ on its own
 - Don't lose anything by requiring a triple coincidence in the trigger
- Trigger on electron at large angle + two charged hadrons at forward angles
 - Detected $e + p + K^+ + K^-$ rate from signal ϕ events is ~10 Hz
 - Large angle electron trigger threshold of 3 GeV
 - Going from 2.5 to 3 GeV reduces photon rate by a factor of 4.4 with respect to the J/ψ number of ~400 kHz

$\mathbf{R}_{\mathrm{Trig.}} = \textbf{\sim80 kHz}$

- Rate is high, should be reduced if we want to run in parallel with existing proposals
- Streaming RO? TOF in trigger? Track trigger?

Process	Rate	Rate
	Forward	Large
	angle 11 GeV	angle 11 GeV
single e^-	340 kHz	35.0 kHz
high energy photon	$7.5 \mathrm{~MHz}$	$0.4 \mathrm{MHz}$
single π^+	$11.0 \mathrm{~MHz}$	$0.25 \mathrm{~MHz}$
single π^-	$7 \mathrm{~MHz}$	$0.18 \mathrm{MHz}$
single proton	$3.3 \mathrm{~MHz}$	$0.19 \mathrm{MHz}$

Table 2: Single rates for charged particles and high-energy photons detected at forward and large angles with an 11 GeV beam. The high energy photon cut-off is 0.7 (2.5) GeV at forward (large) angle.

PID

- Range of K^{+,-} momentum from ~1-4 GeV in forward detector
- HGC will provide π rejection above 2.5 GeV
- 150 ps TOF covers 3σ π/K up to ~2.5 GeV
 MRPC would handle this better, reduce the reliance on HGC near its threshold
- Scattered proton is low momentum, typically 1-2 GeV
 - TOF should be able to handle it

ANALYSIS STRATEGY

Kaons:

- Forward detector has superior PID
 - Longer TOF baseline + Cherenkovs to reject fast pions
 - MRPC would handle PID over whole momentum range
 - SPD TOF could handle it up to where the HGC turns on
- Require kaons to be in forward detector

- Protons:
 - Large-angle detector can PID protons up to ~ 2 GeV with SPD TOF
 - Allow protons in forward or large angle detectors
- Electrons:
 - Acceptance for fully exclusive reconstruction is best when electron is at large angle
 - Require electron in large angle

ACCEPTANCES & MOMENTUM SMEARING

- Utilize an approximate acceptance map for J/ψ setup
 - Scaled by a factor of 0.9 for projections
- Assume a 2% resolution on reconstructed momentum
- Ideally would use full detector simulation including PID

ACCEPTANCES & MOMENTUM SMEARING

- Utilize an approximate acceptance map for J/ψ setup
 - Scaled by a factor of 0.9 for projections
- Assume a 2% resolution on reconstructed momentum
- Ideally would use full detector simulation including PID

RECONSTRUCTED QUANTITIES

- 50 days at 10³⁷ cm⁻²/s
- Kinematics strongly constrained by requirement of being near-threshold
- Highest statistics at quite high Q²
 - Ideal for comparison to OPE predictions!

Sufficient statistics to measure multidifferentially in W, Q²!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

PROJECTIONS

- First look at some projections
 - Assume 50 days at 10^{37} cm⁻²/s
 - − ~43 ab⁻¹
 - Events generated according to CLAS12 model
 - 8 < Q² < 9 GeV² (2-3x Hall C)
 - 2.2 < W < 2.4 GeV
 - This is only one bin of many!
- Pessimistic assumption of 10% uncertainty in quadrature with statistical uncertainties
 - Even in the pessimistic scenario, exhibits good sensitivity to D_s!

BEYOND D_S

Proposal to Jefferson Lab PAC39 Exclusive Phi Meson Electroproduction with CLAS12

- To leading order, exclusive φ @ SoLID can access the same physics as φ @ CLAS12
- - Much larger cross section
 - High precision attainable
- Investigate the non-monotonic behavior observed in φ photoproduction
 - Study how it evolves into the electroproduction regime
 - Needs continuous acceptance in W provided by SoLID

CONCLUSION

- If we ever want a complete experimental measurement of the total D-term of the proton, will need to measure the strangeness D-term
 - More theoretical & phenomenological input is needed!
- SoLID provides a unique opportunity to measure near-threshold exclusive φ electroproduction, the only known process sensitive to D_s
 - Only SoLID will have the luminosity & acceptance to perform a percent-level measurement of this cross section in the foreseeable future

BACKUP

CROSS SECTION MODEL

- Events generated according to these parameterizations using the IAger event generator
- *t*-dependence parameterized as a dipole

CROSS SECTION MODEL

The differential cross section is given by the general expression

$$\frac{d\sigma_{L,T}}{dt} = \frac{\sigma_{L,T} F(t)}{F_{\text{int}}}$$
(51)

$$F(0) = 1,$$
 (52)

$$F_{\rm int} \equiv \int_{t_{\rm max}}^{t_{\rm min}} dt \, F(t), \tag{53}$$

where different physical models are considered for the function F(t) implementing the t-dependence.

1. Exponential t-dependence

$$F(t) = e^{Bt} (54)$$

$$F_{\rm int} = e^{Bt_{\rm min}}/B \tag{55}$$

The exponential slope B is parametrized as a function of W:

$$B(W) = B_0 + 4\alpha' \ln \frac{W}{\text{GeV}}$$
(56)

$$B_0 = 2.2 \,\mathrm{GeV}^{-2},\tag{57}$$

$$\alpha' = 0.24. \tag{58}$$

2. Power–like t–dependence (dipole at amplitude level):

$$F(t) = \frac{m_g^8}{(m_q^2 - t)^4}$$
(59)

$$F_{\rm int} = \frac{m_g^8}{3(m_g^2 - t_{\rm min})^3} \tag{60}$$

The mass parameter at $W \sim \text{few GeV}$ is chosen as

$$m_a^2 = 1.0 \,\mathrm{GeV^2}.$$

The parametrization was constricted by fitting data on the transverse cross section $\sigma_T(W,Q^2)$ and the ratio $R = \sigma_L(W,Q^2)/\sigma_T(W,Q^2)$; the differential cross sections and their *t*-dependence were then parametrized according to different physical models for the *t*-dependence (exponential, dipole) [50]. The transverse cross section is parametrized as

$$\sigma_T(W,Q^2) = \frac{c_T(W)}{(1+Q^2/m_{\phi}^2)^{\nu_T}},\tag{41}$$

$$\nu_T = 3.0 \quad (\text{independent of } W) \tag{42}$$

$$c_T(W) = \alpha_1 \left(1 - \frac{W_{\rm th}^2}{W^2}\right)^{\alpha_2} \left(\frac{W}{{\rm GeV}}\right)^{\alpha_3} \, {\rm nb} \tag{43}$$

$$W_{\rm th} = m_N + m_{\phi} = 1.96 \,{\rm GeV}$$
 (44)

- $\alpha_1 = 400, \tag{45}$
- $\alpha_2 = 1.0, \tag{46}$
- $\alpha_3 = 0.32.$ (47)

The longitudinal cross section is parametrized as

$$\sigma_L(W, Q^2) = R(W, Q^2) \,\sigma_T(W, Q^2) \tag{48}$$

$$R(W,Q^2) = \frac{c_R Q^2}{m_{\phi}^2},$$
(49)

$$c_R = 0.4 \quad (\text{independent of } W) \tag{50}$$

32

(61)