Beam Test Simulation and GEM Analysis

Ye Tian Syracuse University For ECal Beam Test Group

- Scintillators
- Showers
- PreShowers
- Radiation dose
- Summary and Beam Test Outcomes

To-do-list from the Last Collaboration Meeting Talk

- Study coincidence rates from timing plots and MC to find dominant contributions.
- > Investigating other triggers (random/Out-of-Time) to clean up MIP spectra and help particle ID.
- Run MC for Moller? and high energy $\gamma(\pi^0)$ to get better agreement between simulation and data. --- Test it with the Moller event generator from PRad:<u>PRadSim/evgen/norc</u>
- > Rate comparison at high rates.

• Moller background: Generate: 2.5e8 event, only 713 of them deposited energy at Shower Solid Collaboration Meeting

Latest pre-R&D – Detector Beam Test

Scintillators with Coincidence Trigger

- The ShowerSum spectrum changes when the decoder threshold is raised from 6 to 36.
- The threshold=36 plot shows mostly MIP's, whereas the threshold=6 plot is dominated by the small pulses well below the MIP level.

Scintillators with Coincidence Trigger

- The ShowerSum spectrum changes when the decoder threshold is raised form 6 to 36.
- The threshold=36 plot shows mostly MIP's, whereas the threshold=6 plot is dominated by the small pulses well below the MIP level.
- The different time regions have different pulse height spectra. The randoms are dominated by the smallest ShowerSum pulses and the peak is dominated by MIP's.

Scintillators with Coincidence Trigger

- The reason is that since most pions are relatively parallel to the beam line, if there is no SCD in coincidence, the SCA signal is not from a pion.
- This means the MIP peak should be cleanest for a tight 4-12 ns triple coincidence, less clean for coincidences with SCD, and weakest for random triggers.

The Time Difference Between the Closet SC D Pulse and ShowerSum

5uA SC_A & SC_D run 4680_1 triggered timing threshold=36

80 100

ime SC D ShowerSum hi

Entries

Std Dev

Mean

24922

2.21

14.69

The Time Difference Between the Closet SC_B Pulse and ShowerSum

10uA SC_B & SC_D triggered with threshold=36 Events with ShowerSum pulse in range 1, 2, and 3

 $\Delta T(SC_B-ShowerSum)$

10uA ShowerSum MIP Comparison with the SC_B & SC_D triggered

- Cuts: Trigger+ShowerSum signal+ $\Delta T(SC_B-ShowerSum)+\Delta T(SC_A-ShowerSum)$
- ΔT (ShowerSum-SC_B) coincidence cut + ΔT (ShowerSum-PreSh) coincidence cuts work the best to clean up the MIPs.

45uA ShowerSum MIP Comparison

45uA run4653:

- Trigger: SC_B & SC_D
- SC_B height>0.5 MIP (500 ADC)

Observations:

- Gain shifts
- SC_B height >0.5 MIP cut doesn't clean up MIP peaks

45uA ShowerSum MIP Comparison with Gain Correction

Events with shower signal inside the SC_B & SC_D coincident Peak

Trigger only
Trigger+ ΔT (Sh_right & SC_B) cut
Trigger+ ΔT (Sh_right & SC_B)+ ΔT (Sh_right & PreSh_right)+ cut

Trigger only

Trigger+ ΔT (Sh_left & SC_B) cut Trigger+ ΔT (Sh_left & SC_B)+ ΔT (Sh_left & PreSh_left)+ cut

Trigger only

Trigger+ ΔT (Sh_top & SC_B) cut Trigger+ ΔT (Sh_top & SC_B)+ ΔT (Sh_top & PreSh_top)+ cut

45uA ShowerSum MIP Comparison

• For high-rate data, MIP peaks can be cleaned up by applying the coincident timing cut $\Delta T(ShSum-SC_B)$, SC_B and PreShSum.

Simulation MIP Comparison

All particles Shower_Left

All particles Shower_Right

• The simulation plots show that the SC_B & SC_D coincidence cut works better on isolating shower MIP peaks.

Single Detector Rate Comparison between Simulation and Scaled Data

• Using timing plots to get data rate

Detector	e ⁻ kHz/cm ²	π ⁻ kHz/cm ²	π ⁺ kHz/cm ²	π ⁰ kHz/cm ²	EM kHz/cm ²	total kHz/cm ²	Scaled 5uA data kHz/cm ²
SC_A (0.87MIP)	8.66e-5	0.35	0.22	0.068	869.01	869.6	720.0
SC_D (0.78MIP)	1.35e-4	0.41	0.26	0.16	257.9	258.7	197.4
PreShSum 0.5 MIP	8.2e-5	0.26	0.16	0.23	20.3	21.0	17.9
ShowerSum 0.5 MIP	7.1e-5	0.21	0.13	0.2	0	0.54	0.45
SC_B (0.8 MIP)	1.11e-5	0.079	0.038	0.029	701.85	702.0	600.0

Scintillator Coincidence Rates Comparison between Simulation and Scaled Data

• Using timing plots SC_A & SC_D to get data rate

Detector	e⁻ kHz/cm²	π⁻ kHz/cm²	π ⁺ kHz/cm ²	π ⁰ kHz/cm ²	EM kHz/cm ²	total kHz/cm ²	Scaled 5uA data kHz/cm ²
SC_A	7.3e-5	0.27	0.16	0.034	4.9	5.36	4.85
SC_D	2.7e-5	0.098	0.058	0.013	1.8	1.97	1.80
PreShSum	9.0e-6	0.033	0.019	0.0046	0.61	0.67	0.60
ShowerSum	9.0e-6	0.033	0.019	0.0046	0.61	0.67	0.60
SC_B	5.5e-5	0.2	0.11	0.028	3.7	4.07	3.64

• Using timing plots SC_B & SC_D to get data rate

Detector	e ⁻ kHz/cm ²	π ⁻ kHz/cm ²	π ⁺ kHz/cm ²	π ⁰ kHz/cm ²	EM kHz/cm ²	total kHz/cm ²	Scaled 10uA data kHz/cm ²
SC_A	1.76e-6	0.043	0.018	7.9e-4	0	0.062	0.076
SC_D	6.5e-7	0.016	0.0067	2.9e-4	0	0.023	0.028
PreShSum	2.2e-7	0.0053	0.0024	9.8e-5	0	0.0078	0.009
ShowerSum	2.2e-7	0.0053	0.0024	9.8e-5	0	0.0078	0.009
SC_B	1.3e-6	0.032	0.015	6.0e-4	0	0.047	0.055

GEM Analysis

Residue Plots of the Upstream GEMs---Checking Alignment

• 10uA 18deg data with 4 hits on the track, TS4=15mV trigger and Chi2<3 cuts

SoLID Collaboration Meeting

Residue Plots of the Downstream GEMs---Checking Alignment

• 10uA 18deg data with 4 hits on the track, TS4=15mV trigger and Chi2<3 cuts

2D-Residue vs Cluster Hits on the Tracks Plots

20

40.

• 10uA 18deg data with 4 hits on the track, TS4=15mV trigger and Chi2<3 cuts

- APV fine-tune parameters have been removed to reduce backgrounds, which can cause the inefficiency on the right side of GEMs
- The 2mm is the grid size for the tracking algorithm.
- The hard cuts from matching algorithm.

There's no angle misalignment

2D-Residue vs Cluster Hits on the Tracks Plots

• 10uA 18deg data with 4 hits on the track, TS4=15mV trigger and Chi2<3 cuts

Add offsets to GEM10 and GEM00 GEM00_X_offset= 2.7mm GEM10_X_offset= -1.5mm GEM10_Y_offset= -1.0mm

• APV fine-tune parameters have been removed to reduce backgrounds, which can cause the inefficiency on the right side of GEMs

There's no angle misalignment

GEM Cluster Hits on the Tracks w/wo SCs Cuts

- The cut on SC_A should eliminate good tracks for x>25 mm or x<-25 mm.
- There is little evidence that the SC_A cut reduces events for x < -25 mm.
- The SC_A cut does reduce events for x>0.25 cm 06/21/24 Solid Colla

Summary and Outlook

- □ Timing plots are useful for understanding singles rates and coincidence rates.
- The cuts on DT of SC_B and Shower and DT of Shower and Preshower can clean up MIPs for 45uA data.
- □ The comparison of rates from timing plots and the Monte Carlo indicate that single detector simulation rates are <25 % higher than that of the beam test data, while for the simulated scintillator SC_A and SC_D coincidence rates are <15% higher and the simulated SC_B and SC_D coincidence rates are <20% lower that that of the beam test data.
- □ The best GEM quadrants works reasonable with the tracks based on the detection efficiency < 50%, and the other quadrants are much worse. Due to the reason of not setting GEMs properly, it is not worth to do further analysis at this point.
- □ For setting GEM detectors properly, it requires low-rate condition to do the alignment and the APV gain checking.
- ✤ Apply the same method to the 65uA data (run 4685 and 4686) with SC_B & SC_D trigger.

Beam Test Outcomes

Event

Cherenkov Detector: 11Npe ---1/2 of the simulation, which is constant with 2020 Cherenkov beam test.

≻ LASPD Detector:

➢ GEM Detectors: Need low-rate condition to setup

Npe

Beam Test Outcomes

- Cherenkov Detector: 11Npe ---1/2 of the simulation, which is constant with 2020 Cherenkov beam test.
- > LASPD Detector:
- ➢ GEM Detectors: Need low-rate condition to setup
- PreShower: response for the low energy electrons is very different depending on their energies, which can provide information on photon to charged pion ratio.
- > Shower:
- The shower baseline shift is due to tinny pulses from the multiscattering photons by the high energy Moller electrons.
- Shower gain shift

보

Thank you!

Backup

GEM Cluster Raw Hits Only

- Improvement shown with APV correction and hotspot removing, but it is not significant enough to recover the low count area at the right side of the downstream GMEs.
- It requires low-rate condition to do the alignment and the APV gain checking.

GEM Cluster Raw Hits Only

- Only one hit on each downstream GEM detectors
- The "left" quadrants are more efficient than the right quadrants, and the top left quadrant is the most efficient part of the downstream GEMs.

5uA SC_A & SC_D run 4680_1 triggered timing threshold=106

Low energy backgrounds shielded by Pb blocks

-20F

30 vx (cm)

20

10

0

Solid

data_1/24

5uA SC_D & SC_A triggered

10uA SC_D & SC_B triggered

