Simulation and Heavy Gas Cherenkov Update

Zhiwen Zhao and Garth Huber

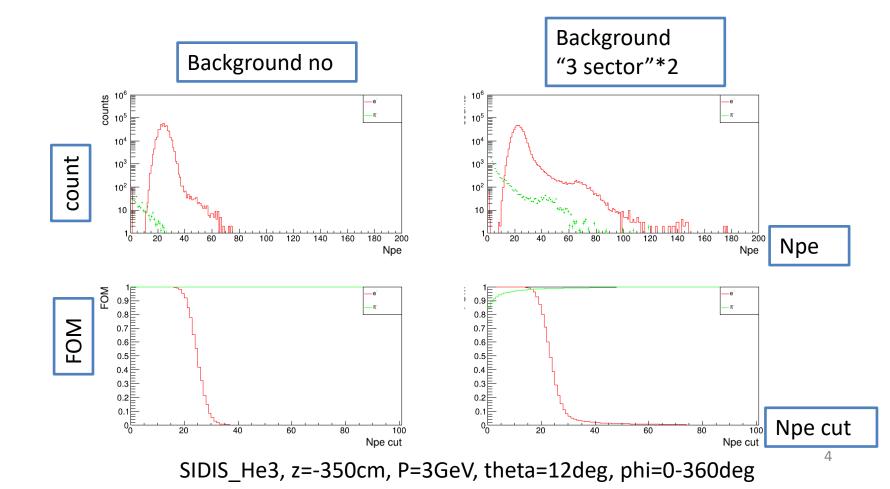
SoLID Collaboration Meeting June 21-22, 2024

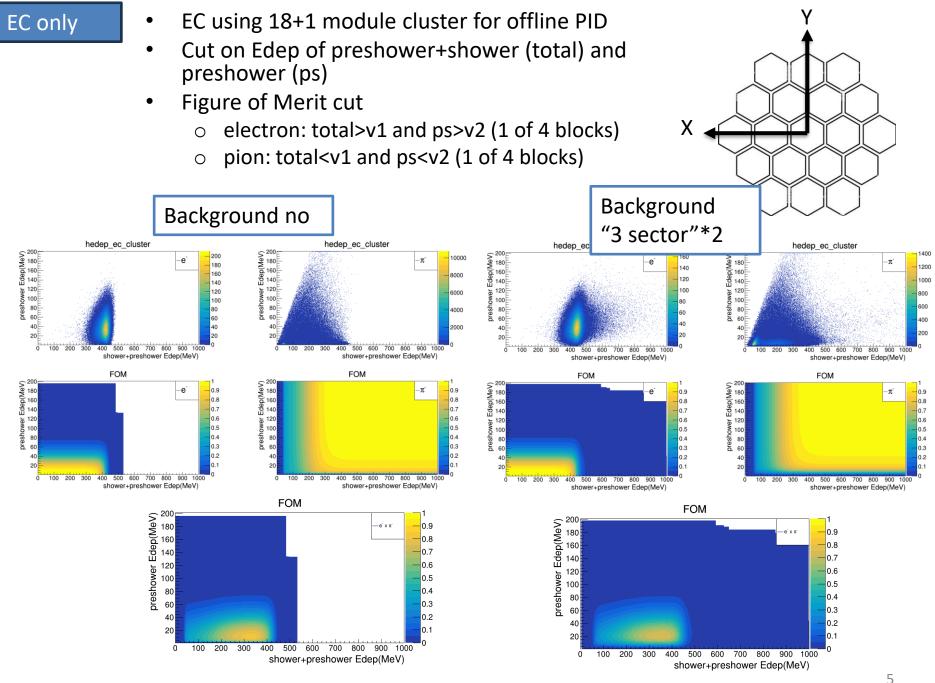
Outline

- Study e/pi PID using LGC+EC with traditional method and AI/ML
- HGC tank funding application at Regina

Study e/pi PID using LGC+EC

- Goal is to have high electron efficiency > 95% and pion rejection as follows
 - EC only, 10-100
 - LGC only, ~1000
 - LGC+EC, 1e4-1e5
- Using full SoLID setup in simulation, then
 - Simulate e and pi with 1e6 events each (more needed)
 - Simulate "beamOnTarget" as background
 - Mix background with each single particle event according to luminosity
 - Output LGC, EC, track info into text file one event per row

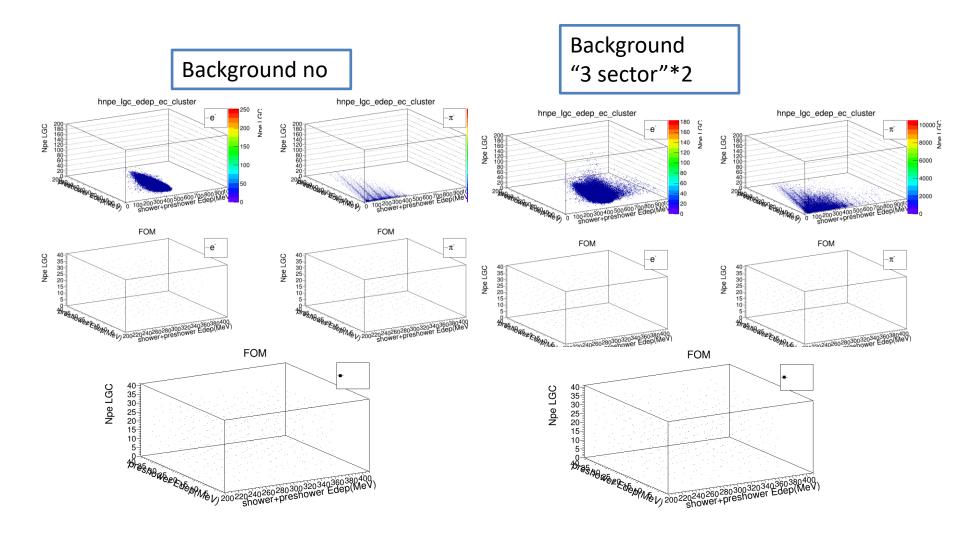

Similar to HGC pi/k study https://solid.jlab.org/DocDB/0004/000451/001/solid_hgc_zwzhao_202205.pdf


Traditional Method

- LGC performance by Npe cut
- Figure of Merit cut:

LGC only

- electron: efficiency =(Nevent of >Npe)/Ntotal (1 of 2 blocks)
- pion: 1-1/rejection = (Nevent of <Npe)/Ntotal ((1 of 2 blocks)



SIDIS_He3, z=-350cm, P=3GeV, theta=12deg, phi=0-360deg

LGC+EC

- Figure of Merit cut
 - electron: 4 of 8 blocks in 3D space
 - Pion: other 4 blocks

SIDIS_He3, z=-350cm, P=3GeV, theta=12deg, phi=0-360deg

ML data format

Just examples

/group/solid/www/solid/html/files/AIML/

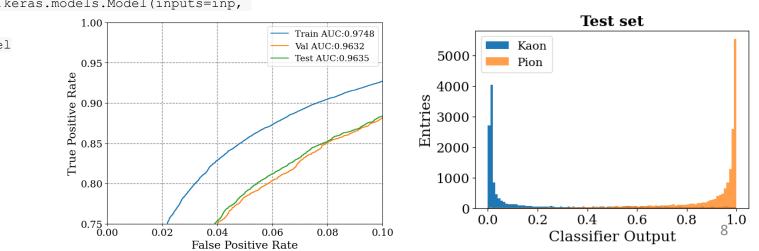
100000 rows x 3079 columns]

https://solid.jlab.org/files/AIML/

solid	_hgc_	sim/b	ackg	roun	d3se	cto	r/soli	d_SIDIS	_He3_hg	c_move	d_pim	_1e5_row_pixel.csv.zip
	0	1	2	3	4		3074	3075	3076	3077	3078	
0	0	0	0	0	0		4934.06	-957.444	773.560	3130.01	1	
1	0	0	0	0	0		6330.81	858.745	1258.640	3130.01	1	4 5 6 6 6 6
2	0	0	0	0	0		5621.80	-1550.810	110.266	3130.01	1	
3	0	0	0	0	0		5706.73	-1519.000	345.001	3130.01	1	0 1
4	0	0	0	0	0		4574.93	1088.980	-1216.480	3130.01	1	2.
											•••	ч. 5- 6-
99995	0	0	0	0	0		7399.62	-909.056	532.744	3130.01	1	7 0 5 10 15 20
99996	0	0	0	0	0		5497.90	1309.600	-455.812	3130.01	1	
99997	0	0	0	0	0		6662.41	351.042	-814.176	3130.01	1	2
99998	0	0	0	0	0		5970.38	-725.987	724.503	3130.01	1	5
99999	0	0	0	0	0	••••	5189.04	-350.627	-1545.720	3130.01	1	7 0 5 10 15 20
r solio	d_hgc	_sim/}	back	grou	nd3s	ecto	pr/soli	ld_SIDI:	S_He3_h	gc_mov	ed_km_	_1e5_row_pixel.csv.zip
[solid	d_hgc 0	_sim/} 1	oack 2	grou 3	nd3s 4	ecto	or/soli 3074	Ld_SIDI: 3075	S_He3_h 3076	gc_mov 3077	ed_km_ 3078	_1e5_row_pixel.csv.zip
[solid		_sim/1 1 0				ecto						_1e5_row_pixel.csv.zip
	0	1	2	3	4	ecto	3074	3075	3076	3077	3078	
0	0 0	1 0	2 0	3 0	4 0		3074 4106.00 0.00	3075 277.924	3076 -846.833	3077 3130.01	3078 0	1e5_row_pixel.csv.zipOne event per row
0 1	0 0 0	1 0 0	2 0 0	3 0 0	4 0 0		3074 4106.00 0.00		3076 -846.833 0.000	3077 3130.01 0.00	3078 0 0	One event per row
0 1 2	0 0 0	1 0 0	2 0 0	3 0 0	4 0 0		3074 4106.00 0.00 3281.10	3075 277.924 0.000 -1390.420	3076 -846.833 0.000 794.323	3077 3130.01 0.00 3130.01	3078 0 0 0	One event per rowdetector info in
0 1 2 3	0 0 0 0	1 0 0 0	2 0 0 0	3 0 0 0	4 0 0 0		3074 4106.00 0.00 3281.10 4942.21	3075 277.924 0.000 -1390.420 1325.020	3076 -846.833 0.000 794.323 -283.395	3077 3130.01 0.00 3130.01 3130.01	3078 0 0 0 0	One event per row
0 1 2 3 4 99995	0 0 0 0	1 0 0 0	2 0 0 0	3 0 0 0	4 0 0 0		3074 4106.00 0.00 3281.10 4942.21 5308.49 4665.86	3075 277.924 0.000 -1390.420 1325.020	3076 -846.833 0.000 794.323 -283.395	3077 3130.01 0.00 3130.01 3130.01	3078 0 0 0 0	 One event per row detector info in each column
0 1 2 3 4 99995 99996	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0	2 0 0 0 0 0 0	3 0 0 0 0	4 0 0 0 0		3074 4106.00 0.00 3281.10 4942.21 5308.49 4665.86 0.00	3075 277.924 0.000 -1390.420 1325.020 1451.740 -559.912 0.000	3076 -846.833 0.000 794.323 -283.395 -904.008 -1062.220 0.000	3077 3130.01 0.00 3130.01 3130.01 3130.01 3130.01 0.00	3078 0 0 0 0 0	One event per rowdetector info in
0 1 2 3 4 99995 99996 99997	0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0		3074 4106.00 0.00 3281.10 4942.21 5308.49 4665.86 0.00 4329.50	3075 277.924 0.000 -1390.420 1325.020 1451.740 -559.912 0.000 -805.390	3076 -846.833 0.000 794.323 -283.395 -904.008 -1062.220 0.000 -996.263	3077 3130.01 0.00 3130.01 3130.01 3130.01 3130.01 0.00 3130.01	3078 0 0 0 0 0 	 One event per row detector info in each column last column as
0 1 2 3 4 99995 99996 99997 99998	0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0		3074 4106.00 3281.10 4942.21 5308.49 4665.86 0.00 4329.50 5739.35	3075 277.924 0.000 -1390.420 1325.020 1451.740 -559.912 0.000 -805.390 -673.397	3076 -846.833 0.000 794.323 -283.395 -904.008 -1062.220 0.000 -996.263 751.146	3077 3130.01 0.00 3130.01 3130.01 3130.01 3130.01 0.00 3130.01 3130.01	3078 0 0 0 0 0 0 0 0 0	 One event per row detector info in each column
0 1 2 3 4 99995 99996 99997	0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0		3074 4106.00 0.00 3281.10 4942.21 5308.49 4665.86 0.00 4329.50	3075 277.924 0.000 -1390.420 1325.020 1451.740 -559.912 0.000 -805.390	3076 -846.833 0.000 794.323 -283.395 -904.008 -1062.220 0.000 -996.263	3077 3130.01 0.00 3130.01 3130.01 3130.01 3130.01 0.00 3130.01	3078 0 0 0 0 0 0 0 0	 One event per row detector info in each column last column as

ML model

Just examples


```
def get custom model v0(inp shape=54):
    # Kishan's model
    inp = Input(shape=inp shape)
   hidden = Dense(256, activation="relu")(inp)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
   hidden = Dense(128, activation="relu")(hidden)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
   hidden = Dense(128, activation="relu")(hidden)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
   hidden = Dense(64, activation="relu")(hidden)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
   hidden = Dense(32, activation="relu")(hidden)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
   hidden = Dense(16, activation="relu")(hidden)
   hidden = BatchNormalization()(hidden)
   hidden = Dropout(0.15) (hidden)
```

```
out = Dense(1, activation="sigmoid") (hidden)
```

model = tf.keras.models.Model(inputs=inp, outputs=out)

```
return model
```

- Simple model with some layers of ٠ neural network works well so far
- AUC (area under an ROC (receiver operating characteristic) curve) is a graph showing the performance of a classification model at all classification thresholds
- Choose any threshold to get how good ٠ the classification is for all types as figure of merit

ML code on google colab

1. "train_pid_solid.ipynb" row (latest)

https://colab.research.google.com/drive/13Y18L YnazxFZfu nABrsn3gDZS6mF8Ga?usp=sharing

2. "TrainSoLID_PID.ipynb" image for Cherenkov https://colab.research.google.com/drive/1AIBIr OgJloSpwV2v3qcGtbKvnC5z2ZIM?usp=sharing

> Help from data science group: *Kishansingh Rajput Malachi Schram*

FOM of e/pi separation Very preliminary

To reach 1e4-1e5 pion rejection, FOM needs to be 0.99990-0.99999

Traditional PID (Bg_no/Bg_3d)	LGC	EC	LGC+EC
PVDIS_LD2	0.999/0.930	0.908/0.845	0.998/0.985
SIDIS_He3	0.999/0.982	0.904/0.866	0.997/0.994
AIML PID (Bg_no/Bg_3d)	LGC	EC	LGC+EC
	LGC 0.99979/0.99175	EC 0.99701/0.99492	LGC+EC

Next: more events and more memory efficient training

10

PVDIS_LD2, z=10cm, P=2.5GeV, theta=22deg, phi=0-360deg

ML use FOM at 0.5 threshold, use row as data format and LGC use PMT sensor size with track info

More AI/ML study

- Hadron PID?
- Reduce GEM background, missing layer and track finding?
- Combine PID and tracking?
- Detector optimization?

Simulation tasks a short list

- Besides individual detector optimization
- EC data and sim comparison using hallc beam test 2022
- GEM response data and sim comparison using hallc beam test 2022
- GEM layout and dead area (maybe not final design, but go beyond current simple ideal donut shape)
- Combined PID

Canadian Funds for SoLID HGC Vessel

• Our grant application through CFI Innovation Fund (IF) 2023 competition was successful

- -Canada Foundation for Innovation (CFI) is a Federal Agency that funds research infrastructure. There is a ~C\$400 million IF competition every two years, covering all disciplines
- CFI funds must be matched by other agencies to qualify for award, typically provincial or institutional funds
- -This can reduce pressure on funds provided by US-DOE

Funds Awarded (Canadian Dollars)				
CANADA FOUNDATION FOR INNOVATION	\$509.5k			
	\$300k			
^{of} Regina	\$209.5k			
TOTAL	\$1019k			

Canadian Funds for SoLID HGC Vessel

- Context: CFI–IF also provided funds for MOLLER
 electronics in 2021 competition (Manitoba led)
- Thanks to our co-applicants, for their support of this CFI–IF application:
 - Klaus Dehmelt (Stony Brook)
 - Abhay Deshpande (Stony Brook)
 - Haiyan Gao (Duke)
 - Michael Paolone (NMSU)
 - Nikos Sparveris (Temple)
 - Aram Teymurazyan (Regina)
 - Zhiwen Zhao (Duke)
- An important part of the CFI-IF application is the EDI plan. Once the SoLID Collaboration is fully constituted, it will be essential that we have a DEI policy (as GlueX does)

Next Steps

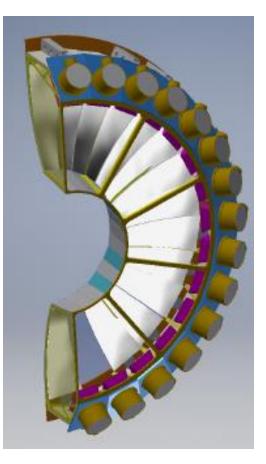
- 1. Before the funds can be released, UofR must sign written agreement with JLab acceptable to CFI
- Can either be modification of existing NPUA or new ICRADA

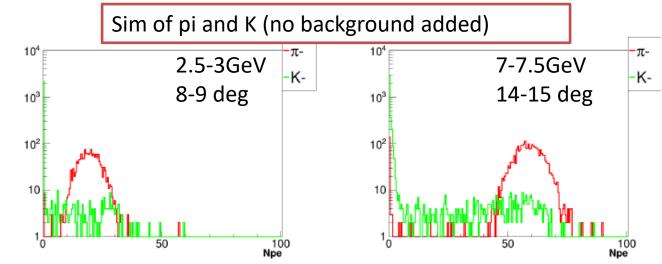
THE AGREEMENT MUST COVER:

- a) Ownership and de facto control of infrastructure
 - UofR already has NPUA with JLab, which states (Article V) that the detector will become property of JLab when it arrives at the lab
- b) Long-term maintenance and operating plans for useful life of infrastructure
 - We assume this will be part of SoLID operations covered by JLab
- c) Reporting and audit requirements
 - Expect these to only involve accounts at UofR
- d) Documentation to support the fair market value of in-kind contribution (other parts of HGC) from US-DOE
 - Assume we will use most recent SoLID budget estimate

Next Steps

2. There is a deadline by which CFI funds must be spent


- This is years away, but I will have to show continuous project activity, as otherwise CFI will close project and take back unspent funds
- UofR has issued a Request for Tender (RFT) for SoLID HGC Vessel, to determine cost increases since 2022 application
 - Canadian Government does not recognize inflation, these are expected to be absorbed by de-scoping items, if required
 - Some assumed inflation was in application. Was it enough?
 - A preliminary RFT provided cost estimates in IF application
 - RFT bids are due August 20. Vendors expected to be notified in early September
- RFT assumes we purchase bulk items (aluminum, nuts & bolts, etc) in 2025, with machining and pressure testing to occur 2026–27, delivery to JLab in 2027–28
- Really need HGC design to be finalized by 2026. Concerned that delays will cause problems with CFI reporting requirements


backup

Cherenkov

HGC:

- Threshold detector: identify pi and reject kaon
- 30 sectors of 4x4 MAPMT array
- Background rate 4MHz/MAPMT
- Not in trigger
- More difficult than LGC in offline analysis
 - Npe and ring size have strong angle and momentum dependance (combine with tracking info)
 - Kaon decay 10-30% into pi and muon which will have Cherenkov light like pion
 - Higher background (within 50ns, each sector has 3Npe from background and minimum 10Npe from signal)

For offline analysis, can AI/ML help with better signal particle identification while suppress more background by using spatial information?

HGC Npe (Number of photoelectron)

- N of pe determined by z,p,theta at vertex
- distribution of pe determined by z,p,theta and phi at vertex

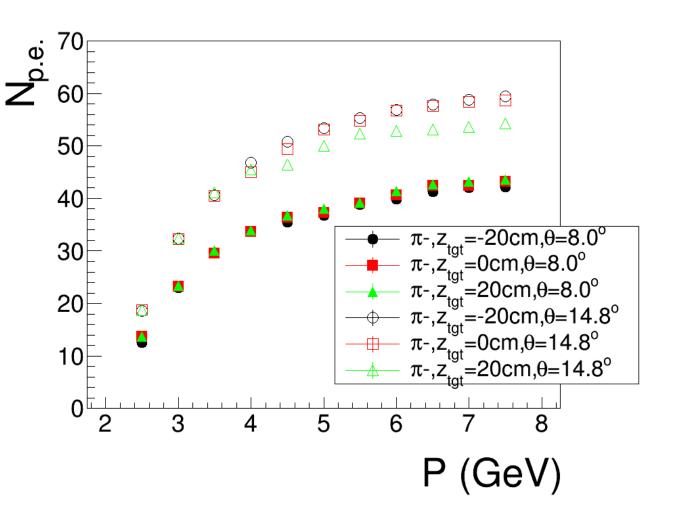
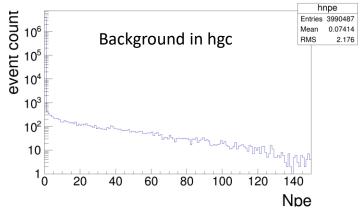



Figure 83: Simulated number of photoelectrons of negative pions as a function of momentum at various polar angles and target vertex positions. A very similar output is obtained for positive pions.

HGC background mixing

- Pion from target center z=-350cm at fixed angle and mom with 0.5 sim safety factor
- kaon from target center z=-350cm at fixed angle and mom without sim safety factor

- Background from "beamontarget" (without sim safety factor)
 - File

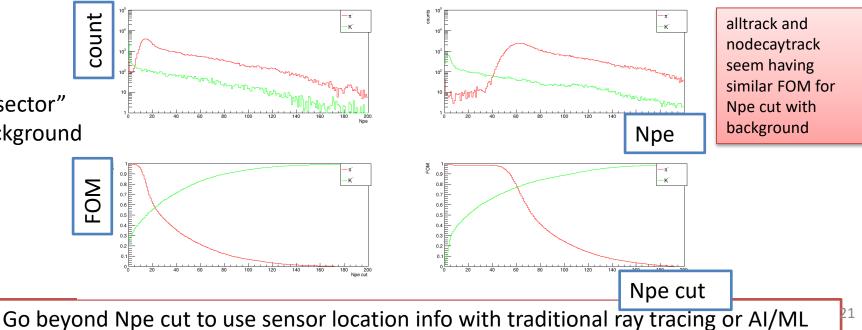
"/cache/halla/solid/sim/solid_gemc/SIDIS_He3_JLAB_VERSION_1.3/pass8/farm_solid_SIDIS_H e3_moved_BeamOnTarget_0.561e10_skim_HGCwinCF1.root"

- SoLID SIDIS He3 run use 15uA beam, so there 15e-6/1.6e-19*50e-9=4.7e6 e- within 50ns time window
- this skim file has 0.561e10 beam e-. It is 0.561e10/4.7e6=1194 of 50ns time window
- This file has 3990487 not-empty-anydetector events and ~9000 not-empty-hgc event. So each 50ns time window, there are 9000/1194=7.5 events in hgc
- If only mixing Npe and considering background is symmetric for 30 sectors
 - In each sector, 50ns time window has 7.5/30=0.25 events in hgc
 - 1 HGC signal events should be in 1 or 2 sectors, but to know which 2 sector, we need to tracking info. So we can simply consider 3 neighboring sectors around the sector with highest Npe
 - In 1/2/3 sectors, 50ns time window has 0.25/0.5/0.75 events in hgc

HGC only

HGC FOM

- HGC performance can be judged by the following figure of merit:
 - 1. FOM pion: efficiency =(Nevent of >Npe)/Ntotal
 - 2. FOM kaon:
 - 1-1/rejection = (Nevent of <Npe)/Ntotal

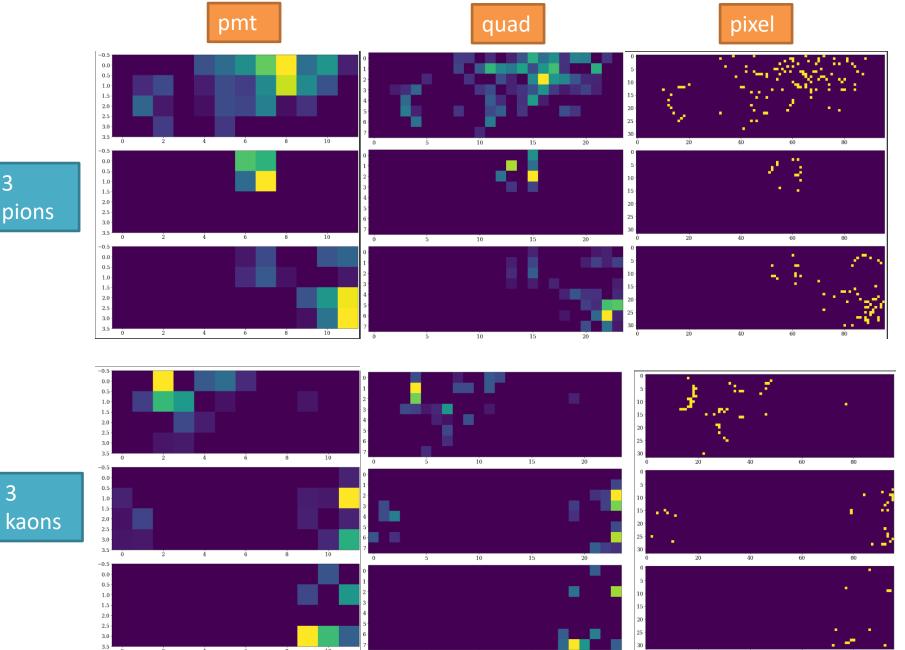

Decay from target to HGC 2.5GeV pion 4.6% kaon 30%

- 7.5GeV pion 1.6% kaon 11.5%
- Evenly kinematics pion 2.7% kaon 18%
- at most 1% decay within target and hope tracking can exclude those

FOM	P=2.5GeV, Theta=8deg alltrack	P=2.5GeV, Theta=8deg <mark>Nodecaytrack</mark>	P=7.5GeV, Theta=14.5deg alltrack	P=7.5GeV, Theta=14.5deg nodecaytrack
No background	0.93	0.99	0.92	0.98
"3 sector" background	0.57	0.60	0.78	0.80
"3 sector double" background	0.52	0.53	0.64	0.66

P=2.5GeV, Theta=8deg alltrack count "3 sector" background -к⁻ FOM

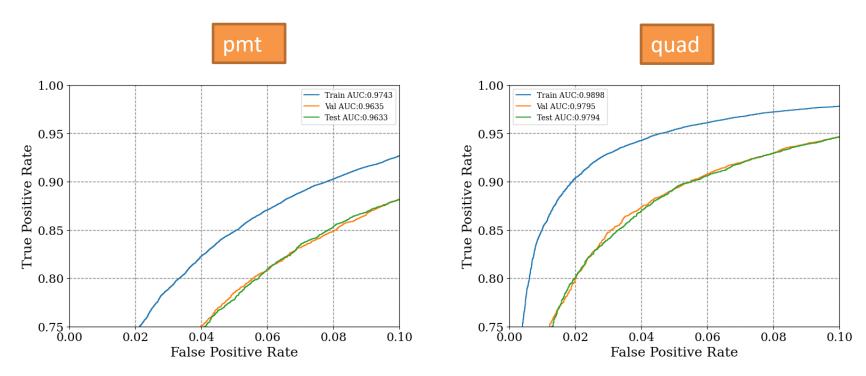
P=7.5GeV, Theta=14.5deg alltrack


3 sector event view

10

3

3


Nodecaytrack, full, Bg_3s*2 z350_p2.5_theta8.0

Nodecaytrack image+track

ROC (pion)

- An **ROC curve (receiver operating characteristic curve)** is a graph showing the performance of a classification model at all classification thresholds
- ROC error is at 0.01 level from data science group initial study

ROC_full_z350_p2.5_theta8.0_background3se ctordouble_48_6_pion.png

ROC_full_z350_p2.5_theta8.0_background3se ctordouble_192_6_pion 23

	FOM results					Nodecaytrack image+track	
		Bg_no Bg_3s			_3s	Bg_3s*2	
z350_p2.5_theta8.0	pmt	0.996	0.996	0.965	0.920	0.900	0.770
	quad	0.996	0.996	0.975	0.960	0.950	0.880
z350_p7.5_theta14.5	pmt	0.999	0.998	0.996	0.995	0.994	0.991
	quad	0.999	0.998	0.998	0.996	0.996	0.994

- FOM is chosen as true pion eff at false kaon rate = 0.05
- Red is hgc only simulation, blue is full simulation
- Each model is individually trained and FOM obtained from test data
- More background can reduce FOM, smaller sensor size can increase FOM
- small angle low P is more difficult than large angle high P
- Pixel result is not shown as it require more data and cpu and mem to train, but the improvement is expected to be relatively small

Q&A with data science group

SoLID	Tracking	Cherenkov	EC
 What are we trying to do? Articulate the objectives of the 3 efforts. * Including the figure of merit 	improve the performance of GEM clustering improve the performance of tracking reconstruction	Improve Cherenkov PID beyond simple Npe cut. For HGC with background , efficiency (> 90%) and rejection (>10) Improve LGC with trigger design	Improve EC PID performance with background. We want to keep pion rejection > (50:1) with electron efficiency>90%.
 Explain what is done today, and what are the limits of current practice? (baseline) 	Not much	Not much, start to explore AI simple Npe cut performance degrade with high background	Not much. the traditional cuts couldn't keep the pion rejection as high due to energy leak at edge
3. If we are successful, what difference will it make?	a few times improvement on the speed and around 10% improvement on the tracking reconstruction efficiency and accuracy. GEM clustering will benefit SBS also	Improve Cherekov performance baseline at high background Help with readout choice to determine if pixel/quad/sum are needed	significantly improve the ECAL PID performance at the edges of EC
 4. Data available (raw and simulated) * File format (root?) * Data format and variable summary (tabular?) * Data size (number of samples?) * Where is the data located? When can we have access? 	Unlimited simulation data in root or text format available on ifarm as soon as we agree on a format	Unlimited simulation data in root or text format Both low rate and high rate data from HallC test (~10 thousands events) Cosmic with background data from bench (~thousands events) available on ifarm as soon as we agree on a format	Unlimited simulation data in root or text format Some low rate real data from Fermi lab test (~thousands events) available on ifarm as soon as we agree on a format
5. Timeline?* Publications/conferences?	Not sure	Working on note/short paper about readout aiming for next year. Al would be a nice part of it or a separated paper	Not sure
6. Who is available to work on this with the data science dept.?	Weizhi Xiong until Feb, someone else afterwards	Zhiwen Zhao, Bo Yu, Michael Paolone	Ye Tian, Zhenyu Ye 25