## Gas Electron Multiplier (GEM) Tracker



Nilanga Liyanage

SoLID GEM Group University of Virginia







### **GEM:** The main tracking option so far: why?

- SoLID concept leads to need for high rate trackers with good position resolution.
- GEMs: cost effective for high resolution tracking under high rates over large areas.
  - Rate capabilities higher than many MHz/cm<sup>2</sup>
  - High position resolution ( < 75 µm)
  - Ability to cover very large areas ( 10s 100s of m<sup>2</sup>) at modest cost.
  - Low thickness (~ 0.5% radiation length)
- Used for many experiments around the world: COMPASS, CMS upgrade, ALICE TPC, pRad, SBS etc.



GEM foil: 50 μm Kapton + few μm copper on both sides with 70 μm holes, 140 μm pitch



### **GEM Overview**





SoLID (SIDIS and  $J/\psi$ )





### **GEM Requirements: for all experiments**

- Good position resolution
  - $\square$  100  $\mu m$  (1 mm) in azimuthal (radial) direction.
    - > 2D U-V readout with 12-degree or 24-degree stereo angle between strips
    - 400 μm (600 μm) strip pitch for layers 1-3 (5-6)
    - > The high occupancy at layer #1: split each readout strip into two channels
    - Total number of channels ~ 215 k (with 15% spares)
- □ 92 % overall GEM-module efficiency.
- modules with a trapezoidal geometry
- □ All readout electronics located at the outer edge: Given radiation exposure map.
- □ Side frames need to be very narrow: minimize material thickness in active area (especially for SIDIS, J/Ψ)

## All requirements follow from tracking and neutron/radiation dose simulation to meet SoLID conditions.







### GEM configuration – Under optimization for SIDIS



| Plane | Z (cm) | R <sub>I</sub> (cm) | R <sub>O</sub><br>(cm) | Length<br>(cm) |
|-------|--------|---------------------|------------------------|----------------|
| 1     | -175   | 36                  | 87                     | 51             |
| 2     | -150   | 21                  | 98                     | 77             |
| 3     | -119   | 25                  | 112                    | 87             |
| 4     | -68    | 32                  | 135                    | 103            |
| 5     | 5      | 42                  | 100                    | 58             |
| 6     | 92     | 55                  | 123                    | 68             |

Total active area ~ 21 m<sup>2</sup>



GEM configuration – New few slides show the work post-doc Asar Ahmed did to see how many SIDIS GEMs could be used for PVDIS



| Location | Z (cm) | $R_{min}$ (cm) | $R_{max}$ (cm) |
|----------|--------|----------------|----------------|
| 1        | 157.5  | 51             | 118            |
| 2        | 185.5  | 62             | 136            |
| 3        | 190    | 65             | 140            |
| 4        | 306    | 111            | 221            |
| 5        | 315    | 115            | 228            |
| Total    |        |                |                |

Total active area  $\sim 37 \text{ m}^2$ 



## SIDIS arrangement

- SIDIS: Layer 6
- Z (cm) Rmin Rmax Length
- 92 55 123 68
- Same module from PVDIS is used to arrange for SIDIS
- At least 19.25 chambers are required to cover  $2\pi$
- 20 chambers are used to make an arrangement.
- Active are overlapping.
- Arrangement is fully supporting outer and inner radius requirements



# PVDIS

• PVDIS: Layer 1

| Z (cm) |       | Rmin | Rmax | Length | Angle |    |
|--------|-------|------|------|--------|-------|----|
|        | 157.5 | 50   | )    | 118    | 68    | 24 |

- Total chamber: 15
  - No overlapping of frames
  - Frames will be behind baffle
  - PVDIS active area per chamber:  $2160.6cm^2$
  - Total SIDIS requirement for layer 6: 38006.56 *cm*<sup>2</sup>
  - Effective active area for SIDIS chamber: 1974.3  $cm^2$
  - Total chambers needed for SIDIS: 19.25



PVDIS Layer 2

| Layer | Z (cm) | Rmin | Rmax | Length |
|-------|--------|------|------|--------|
| 2     | 185.5  | 61   | 140  | 79     |
|       |        |      |      |        |

Total chamber: 15

- No overlapping of frames
- Frames will be behind baffle
- PVDIS active area per chamber: 3018.3*cm*<sup>2</sup>
- Total SIDIS requirement for layer 2: 28771.8 cm<sup>2</sup>
- Effective active area for SIDIS chamber: 2826 cm<sup>2</sup>
- Total chambers needed for SIDIS L2: 10.18



# PVDIS L2 -> SIDIS L2 arrangement

| Z    | Rmin | Rmax | Length |
|------|------|------|--------|
| -150 | 21   | 98   | 77     |
|      |      |      |        |

- Same module from PVDIS L2 is used to arrange for SIDIS L2
- At least 10.18 chambers are required to cover  $2\pi$
- **11** chambers are used to make an arrangement.
- Active area fall between Rmin: 21 cm and Rmax: 98cm
   Inner region is crowded with frame

Arrangement is fully supporting outer and inner radius requirements



Asar Ahmed

## PVDIS L5->SIDIS L1 & L5



Asar Ahmed

PVDIS Layer 5:

| Z   | Rmin | Rmax | Length |
|-----|------|------|--------|
| 315 | 110  | 228  | 118    |
|     |      |      |        |

Total chamber:  $30(12^{\circ})$ 

- No overlapping of frames
- Divided full length into two
  - Inner chamber (L:51.7, OE: 31.38, IE: 20.51)
  - Outer chamber (L 61.00, OE: 45.10, IE: 32.28) in cm.
- Doing so, same chambers can be used in SIDIS L1 & L5





## PVDIS L5 inner -> SIDIS L1 arrangement

| SIDIS Z | Rmin | Rmax | Length |
|---------|------|------|--------|
| -175    | 36   | 87   | 51     |
|         |      |      |        |

- Same module from PVDIS L5 (inner) is used to arrange for SIDIS L1
- 18/30 chambers from PVDIS L5 (inner) are used to cover  $2\pi$
- This arrangement requires all the electronics and cabling towards beam pipe.

Arrangement is fully supporting outer and inner radius requirements



## PVDIS L5 outer -> SIDIS L5 arrangement

| SIDIS Z | Rmin | Rmax | Length |
|---------|------|------|--------|
| 5       | 42   | 100  | 58     |
|         |      |      |        |

- Same module from PVDIS L5 (outer) is used to arrange for SIDIS L5
- 14/30 chambers from PVDIS L5 (outer) are used to cover  $2\pi$
- Detector active area is 3cm longer then required length.

Arrangement is fully supporting outer and inner radius requirements



Asar Ahmed

## Summary

| PVDIS Layer No | Chambers required                                          | SIDIS Layer No | Chamber reused      | Status     |
|----------------|------------------------------------------------------------|----------------|---------------------|------------|
| 1              | 15 (24 <sup><i>o</i></sup> )                               | 6              | 20                  | -5         |
| 2              | 15 (24 <sup><i>o</i></sup> )                               | 2              | 11                  | +4         |
| 3              | 15 (24 <sup><i>o</i></sup> )                               | 3              | 13                  | +2         |
| 4              | 30 (12 <sup><i>o</i></sup> )                               | 4              | 19                  | +11        |
| 5              | 30 (12 <sup>o</sup> ) shor + 30<br>(12 <sup>o</sup> ) long | 1<br>5         | 18 short<br>14 long | +12<br>+16 |

| Location Z       | Rmin<br>36 | Rmax    | Length | Angela |               |               |           |            |              |             |                 |              |         |
|------------------|------------|---------|--------|--------|---------------|---------------|-----------|------------|--------------|-------------|-----------------|--------------|---------|
| 4 475            | 36         |         | •      | Angle  | Act Min arc L | Act Max arc L | T Act ar  | Act ar/Det | Sectors/Foil | Frame width | AvrLap ar/Frame | T ovr region | % ovr   |
| 1 -1/5           |            | 87      | 51     | 22.5   | 14.13         | 34.1475       | 19697.22  | 1231.0763  | 12.3107625   | 1.25        | 63.75           | 4080         | 20.7136 |
| 2 -150           | 21         | 98      | 77     | 22.5   | 8.2425        | 38.465        | 28771.82  | 1798.2388  | 17.9823875   | 1.25        | 96.25           | 6160         | 21.4098 |
| 3 -119           | 25         | 112     | 87     | 22.5   | 9.8125        | 43.96         | 37425.66  | 2339.1038  | 23.3910375   | 1.25        | 108.75          | 6960         | 18.5969 |
| 4 -68            | 32         | 135     | 103    | 22.5   | 12.56         | 52.9875       | 54011.14  | 3375.6963  | 33.7569625   | 1.25        | 128.75          | 8240         | 15.2561 |
| <mark>5</mark> 5 | 42         | 100     | 58     | 22.5   | 16.485        | 39.25         | 25861.04  | 1616.315   | 16.16315     | 1.25        | 72.5            | 4640         | 17.942  |
| 6 92             | 55         | 123     | 68     | 22.5   | 21.5875       | 48.2775       | 38006.56  | 2375.41    | 23.7541      | 1.25        | 85              | 5440         | 14.3133 |
|                  |            |         |        |        |               |               |           |            |              |             |                 |              |         |
| 4 -68            | 32         | 61      | 29     | 22.5   | 12.56         | 23.9425       | 8468.58   | 529.28625  | 5.2928625    | 1.25        | 36.25           | 2320         | 27.3954 |
| 4 -68            | 61         | 140     | 79     | 22.5   | 23.9425       | 54.95         | 49860.06  | 3116.2538  | 31.1625375   | 1.25        | 98.75           | 6320         | 12.6755 |
|                  |            |         |        |        |               |               |           |            |              |             |                 |              |         |
|                  |            |         |        |        |               |               |           |            |              |             |                 |              |         |
| PVDIS            | 1          | N. Det: | 15     |        | Frame Width;  | 1.25          |           |            |              |             |                 |              |         |
| Layer Z (cm) Rm  | min F      | Rmax I  | Length | Angle  | Act Min arc L | Act Max arc L | T Act ar  | Act ar/Det | Sectors/Foil | Frame width | AvrLap ar/Frame | T ovr region | % ovr   |
| 1 157.5          | 50         | 118     | 68     | 24     | 20.93333333   | 49.40266667   | 35871.36  | 2391.424   | 23.91424     | 1.25        | 85              | 5100         | 14.2175 |
| 2 185.5          | 61         | 140     | 79     | 24     | 25.53866667   | 58.61333333   | 49860.06  | 3324.004   | 33.24004     | 1.25        | 98.75           | 5925         | 11.8833 |
| 3 190            | 61         | 140     | 79     | 24     | 25.53866667   | 58.61333333   | 49860.06  | 3324.004   | 33.24004     | 1.25        | 98.75           | 5925         | 11.8833 |
| 4 306            | 110        | 228     | 118    | 12     | 23.02666667   | 47.728        | 125235.76 | 8349.0507  | 83.4905067   | 1.25        | 147.5           | 8850         | 7.06667 |
| 5 315            | 110        | 228     | 118    | 12     | 23.02666667   | 47.728        | 125235.76 | 8349.0507  | 83.4905067   | 1.25        | 147.5           | 8850         | 7.06667 |

# SBS GEM trackers: gaining GEM operation experience under conditions exceeding SoLID requirements

- 50 cm x 60 cm GEM modules for SBS rear tracker: 48 modules –All installed, 36 in beam
- 150 cm x 40 cm large GEM modules for SBS front tracker: 6 modules all in in beam; two more under construction now



Active areas larger than the largest SoLID GEM detectors needed

UV (shown) 40 x 150 sq.cm Single module

XY (shown) 60 x 200 sq.cm 4 modules

# SBS GEM trackers: gaining GEM operation experience under conditions exceeding SoLID requirements

• SBS GEM trackers have been running well for about 18 months months in GMn, nTPE, Gen-II, and GEn-RP experiments.

• In Gen-II: up to 45 uA on 60 cm 3He target: luminosity ~ 5 times higher than proposed SoLID 3He SIDIS run.

• In GMn and GEn-RP: already ran the BB GEM tracker in unprecedented integrated rates (active area x local rate): stable running with 12 uA beam on 15 cm LD2 target: test runs up to 36 uA on LD2: luminosity ~  $3 \times 10^{38}$ ; within about factor of 3 of SoLID PVDIS.

• In SBS all this without baffles and direct line of sight to target: GEM hit rates and occupancies already achieved in SBS are higher than the worst case predicted for SoLID

### SBS GEM trackers: Important conclusions about long term running under very high exposure conditions

- UVa GEM tracker layers have been working very well:
  - stable operation: not too many HV trips
  - Robust under harsh conditions. So far only 4 out of the 42 detectors in beam had to swapped out due to suspected short in one sector (out of 30 in the detector).
  - No radiation damage observed
  - No detector aging effects observed
  - Noise levels sufficiently low
  - Good gain: signals well above noise
  - Very good resolution: ~ 70 um for tracks perpendicular to detector.
  - Real time firmware zero suppression has been working very well.
  - Data volumes manageable

Most important lesson: The current drain to detector is too high for the resistive voltage dividers to handle; caused efficiency drop.
The Good solution with new power supply scheme: tested and demonstrated to work

### SBS GEM: HV supply issue







10



Director's Review of SoLID, September 9-11, 2019



### **GEM** Occupancy per Layer



| PVDIS GEM occupancies |                                     |                   |  |  |  |  |  |
|-----------------------|-------------------------------------|-------------------|--|--|--|--|--|
| Plane                 | Total strip number (u+v) per sector | Raw Occupancy (%) |  |  |  |  |  |
| 1                     | 1156                                | 4.48              |  |  |  |  |  |
| 2                     | 1374                                | 2.55              |  |  |  |  |  |
| 3                     | 1374                                | 2.21              |  |  |  |  |  |
| 4                     | 2287                                | 0.82              |  |  |  |  |  |
| 5                     | 2350                                | 0.75              |  |  |  |  |  |

SBS achieved occupancies higher than what is projected for PVDIS and SIDIS



However, we need to be careful – SoLID occupancy is not uniform, hot-spots at small radius





#### Summary P Layer ( s on good tracks Layer 2 Layer 3 Tracking residual sigma ~ 90 µm 0.5 Question 1 1 2 -0.5 LV difficulties in LO&1 (INFN chambers). -0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2 All others working well in GEn! Layer 6 Layer 7 0. 0.5 -0. -0 GEn-RP will run with -0.2 0 0.2 .== -0.2 0 0.2 .... 0.2 .... 0.2 +== -0.2 0 -0.2 0 all layers next spring 5 (prior to GEp)

### 6 XY have been running successfully in SBS since 2022

- The biggest challenge: tracking with so many possible combinations at high occupancies.
- New idea we are trying to implement: 2 or 3 pixel chambers with ~ 1x1 cm<sup>2</sup> pixels in addition to strip layers: reduces the combinations by a lot.



### The $\mu$ -RWELL – Principle of Operation

The  $\mu$ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the  $\mu$ -RWELL\_PCB and the cathode. **The core is the \mu-RWELL\_PCB**, realized by coupling three different elements:



Applying a suitable voltage between the **top Cu**layer and the DLC the WELL acts as a multiplication channel for the ionization produced in the conversion/drift gas gap.



New development by Giovanni Bencivenni's group at Frascatti in collaboration with Rui De Oliveira at CERN

### The PEP-dot **µ-RWELL**





- The most recent high rate layout
   Patterning-Etching-Plating
- The DLC ground connection is established by creating **metalized vias** from the top Cu layer through the DLC, down to the pad-readout of the PCB
- The dead zone is ~2%



18

- Excellent efficiency and stable operation up to 10 MHz/cm<sup>2</sup> for 1D readout pixel or strip chambers
- 2D strip readout is a challenge due to relatively low gain.
- A good solution is two 1D strip chambers next to each other.



#### 19

• Gianni Bencevinni's group at Frascati has shown that the improved uRwell could operate at hit rates up to 10 MHz/cm<sup>2</sup>; my colleague Huong Nguyen has visited his lab and formed collaborative connections with his group; Dr. Bencevinni has graciously agreed to collaborate with us on this new development aimed at SoLID.

•Having three pixel chambers separated by some distance and requiring .AND. between hits on all 3 can clean up most of the random hits and select mostly the high energy tracks.

•Given the catchment area for these pixels, the occupancy level would be about  $1/6^{\text{th}}$  of that of any proposed UV chamber; so in the worst case the occupancy would be around 10%; and the .AND. condition would lower this down to about  $10^{-3}$ 

•All this would ensure that we have a pretty narrow (about a factor of 100 smaller in area than right now), very clean search area for hits on the strip chambers.

•Plus the detector construction becomes much simpler compared to GEMs



- One idea is to build each wheel with four 90-degree chambers
- Each chamber by gluing some number of 1D u-Rwell layers side by side
- Largest chambers will be ~  $1 \text{ m}^2$ , with outer arc lengths ~ 2 m



- Given the large area, need to study mechanical stability of the gap.
- How thin can we make the gap to achieve good resolution



The detector works well and highly stable; the reason efficiency is ~ 70% due to charge being divided between the U and V strips. We propose to use the proven high efficiency single layer readout



### Pre R&D needs if early funding is available

• GEMs: Design and prototype two or three of required sizes, test and characterize with new electronics.

- Optimize engineering design: GEM foil stress, holding frame thickness, gas flow optimization etc.
- $\cdot\mu$ -Rwell: Design, optimize and build mechanical prototypes to evaluate the large surface area designs.
- •Build and characterize a  $\mu$ -Rwell side-by-side mosaic detector with 2 or 3 trapezoidal slices.

 $\bullet$  Participate in the  $\mu\text{-Rwell}$  development and fabrication work at Frascati and CERN.

### Summary

- SBS run demonstrates that ambitious goals of SoLID tracking could be achievable with GEMs.
- However, adding a couple of pixel layers could enhance tracking significantly: needs evaluation with simulations
- High rate  $\mu$ -Rwell is an exciting new possibility.
- Has the potential to lower the cost and reduce fabrication complexity.
- Pre-R&D is needed to evaluate