

SoLID DAQ preRD and plans

SoLID collaboration meeting June 22nd 2023

Alexandre Camsonne

- Outline
- Capital
- Testing
- GEM chip
 - VMM
 - SALSA
 - APV25
- Streaming DAQ
- Conclusion

Capital equipement DAQ

Requested

Item	cost/item	number	total	
FADC 250	6000	104	624000	
Gigabit serial connector s			40000	
Cables	100	1664	166400	
VETROC	4000	30	120000	
TD	3000	16	48000	
VTP	10000	31	310000	
SSP	5000	4	20000	
VTP	8000	1	13000	
TS	4000	1	4000	
TID	3000	31	93000	
SD	2500	32	80000	
VXS crate	15000	32	480000	
VME CPU	7000	32	224000	
		Total	2217400	
	FTE/year cost	months		
Syracuse	80000	12	80000	
FEDAQ	120000	2	20000	
Hall C	120000	2	20000	
			2337400	

Updated

ltem	cost/item	number	total	
FADC 250	6127	104	637208	
Gigabit serial connector s	40000	1	40000	
Cables	100	1664	166400	
VETROC	4000	30	120000	
TD	3000	16	48000	
VTP	12500	31	387500	
SSP	5000	4	20000	
VTP	12500	1	12500	
TS	4000	1	4000	
TID	3000	31	93000	
SD	2500	32	80000	
VXS crate	19000	32	608000	
VME CPU	9500	32	304000	
		Total	2520608	
	FTE/year cost	months		
Syracuse	67000	12	134000	
FEDAQ	120000	2	20000	
Hall C	120000	2	20000	
			2694608	

Testing

SBS GEn

- VTP readout
- APV25
- High data rate : 2.1 GB/s
- NPS
 - Calorimeter trigger
- SBS GEp
 - Calorimeter trigger
- HKS
 - Trigger with Cerenkov
 - High resolution TOF with MRPC
- + parasitic beam tests

Future SoLID preRD

- Highest priority : GEM chip
 - Evaluate SALSA chip in high background environment
 - Improve VMM board signal to noise
 - Test with uRWell
- Calorimeter and Cerenkov readout
 - FADC ASIC to be placed on detector : only LV and optical fibers going out instead of BNC cables
- High resolution timing
 - AARDVARC test in beam
 - High resolution FADC timing ASICS

VMM test

- Ordered two test board 1500 \$ x 2
- Build 6 SoLID prototype boards
- Evaluation board : can look at data with detector small subset of channels
 - Issue with external trigger but waiting for new firmware
 - Can check pedestal width
 - Signal to noise with detector with source and cosmics
 - Look at direct readout signals for 12 channels of detector
- Prototype development for data performance, test direct output with detector and X-ray source

Signal gain vs shaping time, gain = 3 mV/fC

From source data, 25 ns shaping only about 15 % lower than 50 ns, so 25 ns shaping useable

128 channel VMM prototype for SoLID

• Features

- Fast 6-bit ADC data from each channel allows for high hit rates (~10MHz/ch)
- Dual readout paths (fiber)
 - 10GbE for low radiation environments (FPGA \rightarrow SFP+)
 - Readout using CERN rad hard components (FPGA \rightarrow GBTx \rightarrow VTRx)
- Power and signal interface through mezzanine cards
 - Initially use commercial components on mezzanines
 - Later mezzanines with rad hard components no modification of base board
- Mitigation of effects of radiation on FPGA by triplicating logic and adding voting circuitry (TMR)
- Status
 - Commercial component mezzanine boards fabricated
 - Base board fabrication in early May

VMM 6-bit Direct Output data format

Peak amplitude converted to 6-bit value

VMM 6-bit ADC direct data

(VMM evaluation board read out with Xilinx FPGA development card)

VMM dead time pulser test 6 bit

• Dead time is :

25 ns (peaking time) + 5 ns (peak finding) +25 ns data conversion + 7 x 6.25 ns data transfer ~120 ns Can go down to \sim 90 ns when using DDR (6.25 / 2)

VMM dead time pulser test 10 bit

• Dead time is :

25 ns (peaking time) +5 ns (peak finding) +25 ns data conversion + 7 x 6.25 ns data transfer ~120 ns Can go down to \sim 90 ns when using DDR (6.25 / 2)

Sr90 VMM 6 bit 16mV/fC GEM at 4200 V

Noise 6 bit 16mV/fC Sr90

- Amplitude for MIP not change much
- Pedestal width dependent on peaking time

Conclusion VMM testing so far

- 90 ns dead time in 6 bit mode
- Some noise seen in prototype
- Noise larger with decreasing integration time
- MIP a bit low in dynamic range of 6 bit prototype
- Implementing 10 bit to cross compare with evaluation board
- 250 ns for 10 bit mode
- Implement higher gain : Compton preAMP maybe ? Or higher gain chip
- Would like to explore SALSA option : same performance as APV25 with no dead time

Streaming readout overview

Streaming readout

- Send all data from each detector continuously (or self triggered)
- Pro
 - No trigger
 - If can be recorded : record all physics available
 - If cannot be recorded : full reconstruction and record event of interest with advanced triggering or loose trigger
 - AIML algorithm very efficient with unbiased data samples
- Con
 - Need deadtime less electronics : ideally all FADCs (but high power comsuption)
 - Large amount of data to transfer to computer farm : cost in network
 - Large amount of data to be processed
 - Large amount of data to be recorded

Streaming readout option numbers

			Singles rate	Event siz	e		Singles rate	Event size	Data rate		Singles	Event size	Data rate
Detector	Area m2	SIDIS	MHz	bytes	Data rate GB	PVDIS	MHz	bytes	GB	JPSi	rate MHz	bytes	GB
LGC	0.7	16	112	16	1.792	80	560	88	49.28	40	280	16	4.48
HGC	1.2	160	1920	16	30.72		0	88	0		0	16	0
SPD_FA	15.2	0.02	3.04	16	0.04864		0	88	0	0.06	9.12	16	0.14592
SPD_LA	3.7	0.12	4.44	16	0.07104		0	88	0	0.25	9.25	16	0.148
EC_presh ower_FA	19	33	6270	16	100.32	90	17100	88	1504.8	77	14630	16	234.08
EC_show er_FA	19	10	1900	16	30.4	9	1710	88	150.48	14	2660	16	42.56
EC_presh ower_LA	4.1	45	1845	16	29.52		0	88	0	80	3280	16	52.48
EC_presh ower_LA	4.1	5	205	16	3.28		0	88	0	19	779	16	12.464
GEM	37	800	296000	16	4736	500	185000	16	2960	1600	592000	16	9472
	Rate in GB/s				4932				4664				9818

Around 10 to 5 TB/s, about 1000 more data than triggered

AI/ML hardware acceleration

Type	Hardware	Inference	Max	Setup
		time	throughput	
			(img/s)	
CPU	Xeon 2.6 GHz,1 core	1.75 s	0.6	CMSSW, TF $v1.06$
CPU	i7 3.6 GHz, 1 core	$500 \mathrm{\ ms}$	2	python, TF v1.10
CPU	i $7 3.6 \text{ GHz}, 8 \text{ core}$	$200 \mathrm{ms}$	5	python, TF v1.10
GPU (batch= 1)	NVidia GTX 1080	$100 \mathrm{\ ms}$	10	python, TF v1.10
GPU (batch= 32)	NVidia GTX 1080	$9 \mathrm{ms}$	111	python, TF v1.10
GPU (batch= 1)	NVidia GTX 1080	$7~\mathrm{ms}$	143	TF internal TF v1.10
GPU (batch= 32)	NVidia GTX 1080	$1.5 \mathrm{~ms}$	667	TF internal TF v1.10
Brainwave	Altera Artix	$10 \mathrm{\ ms}$	660	CMSSW, on-prem
Brainwave	Altera Artix	$60 \mathrm{\ ms}$	660	CMSSW, remote

Could gain factor of ~ 100 processing with GPUs, might be able to do better

Salsa

- Collaboration of Irfu CEA Saclay and U. of Sao Paulo.
- SALSA
- 64-Ch, updated design from SAMPA V5, migrating to 65 nm CMOS.
- Peaking time: 50 500 ns
- Inputs: Cin optimized for 200 pF; Rates: 25 kHz/Ch; Dual polarity.
- ADC: 12 bits, 10 50 MSPS.
- Extensive data processing capabilities.
- Triggerless and triggered operation.
- Power: 15 mW/Ch
- Gbps links.
- I2C configuration.
- Evaluation board available this year Might want a dedicated SoLID version to match tracker low gain operation and handle high rates at input

Conclusion

- Capital equipment
 - All elements for SoLID DAQ besides CPU procured
- Developments of SoLID trigger and readout in previous and upcoming experiments
- ASICs development could benefit SoLID
- GEM chip solution to be finalized
 - VMM can work but not ideal
 - SALSA promising but need R&D for high rate operation
 - APV25 readout update can be fall back for 100 k channels
- Streaming option
 - About 5 to 10 TB/s about 1000 more than triggered
 - Might be able to handle with AIML progress, network progress and CPU
 - Streaming readout is an option with upgrade of data links and HPDF
- SoLID in streaming mode, could be the ultimate JLab detector Just run detector at full luminosity all the time and extract all possible physics after the run