Measurement of the Unpolarized SIDIS Cross Section from a ³He Target with SoLID

Shuo Jia

Vlad Khachatryan

Department of Physics Duke University Department of PhysicsDepartment of PhysicsIndiana UniversitySyracuse University

SoLID Collaboration Meeting, Argonne National Lab, Lemont, IL June 21-22, 2024

Ye Tian

Outline

 \succ SoLID SIDIS setup with transversely and longitudinally polarized ³He targets

- Setup and experimental details
- Unpolarized cross-section framework
- Estimated systematic uncertainties
- > Results
 - Unpolarized cross-section SoLID SIDIS projections
 - Some physics results from unpolarized cross section
- Summary and outlook

Summary and outlook

SoLID SIDIS - ³ He setup	Unpolarízed cross-sectíon framework	Systematíc uncertaíntíes	1
Our run group	experiment parasitic to	o SoLID SIDIS e	xpe
E12-10-006: Singl Transversely Pola	e Spin Asymmetries on rized ³ He (neutron): Rating	g A on Longitu	7: S udir
Approved num	ber of days:	> Approv	/ed
• 48 days (11 Ge	V) & 21 day (8.8 GeV)	• 22.5	day
10 days reques factorization wi gas using refer	sted for study of x-z th Hydrogen/Deuterium ence target cell	Solid (Sidi	S ³ F
3 days of reference detector check	ence cell runs for optics a	and	GEM
5 days of targe polarization me	et overhead: spin rotatior easurement	Collimator	
3 days requested polarization to structure contamination	d with longitudinal target udy systematics of potential	A _{UL}	
SIDIS: e +	$\mathbf{p} \rightarrow \mathbf{e}' + \pi \pm \mathbf{X}$	• •	

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

3

eriments of

- Single and Double Spin Asymmetries nally Polarized ³He (neutron): Rating A
- number of days:
- vs (11 GeV) & 9.5 day (8.8 GeV)

- The SIDIS process represented as (four-momenta given in parentheses)

 $l(k_1) + N(P) \rightarrow l'(k_2) + h(P_h) + X(P_X)$

- *l* lepton beam
- N nucleon target
- *h* produced hadron
- X undetected hadror
- q virtual photon momentum

Kinematics of the SIDIS process: assume one-photon exchange approximation

Express the process cross section in terms of the following kinematic variables

$$x_{bj} = \frac{Q^2}{2P \cdot q}, \qquad y = \frac{P \cdot q}{P \cdot k_1}, \qquad z_h = \frac{P \cdot P_h}{P \cdot q},$$
with *q* and Q² defined as $q \equiv l - l'$ and $Q^2 \equiv -q^2$

Summary and outlook

4

Jefferson Lab

Azimuthal angle between hadron production and lepton scattering planes designated as ϕ_h

$$\gamma = \frac{2M_N x_{bj}}{Q}$$

Unpolarized SIDIS differential cross section given by

$$\frac{d\sigma}{dx_{bj}dydz_{h}dP_{hT}^{2}d\phi_{h}} \equiv \mathcal{F}_{\mathcal{U}\mathcal{U}} = \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}}\cos 0 + \mathcal{F}_{\mathcal{U}}$$

Unpolarized TMD
$$\mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}} = 2\pi \frac{\alpha^{2}}{x_{bj}yQ^{2}} \left(1 + \frac{\gamma^{2}}{2x_{bj}}\right)c_{1}F_{UU},$$

In this scheme, the unpolarized structure function F_{UU} given by

 $F_{UU} = \sum_{\alpha} e_q^2 x \int d^2 \mathbf{k}_{\perp} f_q(x, k_{\perp}) D_q(z, p_{\perp})$

Use the following Gaussian parameterizations for the TMD PDF and TMD FF
Ise the following Gaussian
$$f_q(x, k_\perp) = f_q^c(x) \frac{e^{-\kappa_\perp^2/2}}{\pi \langle k_\perp^2 \rangle}$$

$$F_{UU} = \sum_{q} e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{e^{-P_{hT}^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Phys. Rev. D 91, no.7, 074019 (2015)

 $\mathcal{U}, \mathcal{B}\cos(\phi_h) + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}}\cos(2\phi_h)$

 ϕ_h - dependent unpolarized azimuthal modulations

 $\frac{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}{\pi \langle k_{\perp}^2 \rangle} \quad D_q(z, p_{\perp}) = D_q^c(z) \frac{e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}}{\pi \langle p_{\perp}^2 \rangle}$

where $\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle$

$$\mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{B}} = 2\pi \, \frac{\alpha^2}{x_{bj} y Q^2} \left(1 + \frac{\gamma^2}{2x_{bj}} \right) c_2 \, F_{UU}^{\cos(\phi_h)},$$

> The second structure function $F_{UU}^{cos(\phi_h)}$, associated to the $cos(\phi_h)$ modulation of the cross section, is a twist-3 quantity of the order of 1/Q

$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}}$$

where

$$F_{UU}^{\cos(\phi_h)}|_{\text{Cahn}} = -2\sum_q e_q^2 x \int d^2 \mathbf{k}_\perp$$

as the Cahn convolution of unpolarized TMD PDF and TMD FF

$$F_{UU}^{\cos(\phi_h)}\big|_{\rm BM} = \sum_q e_q^2 x \int d^2 \mathbf{k}_\perp \, \frac{k_\perp}{Q} \frac{P_{hT} - z \, (\mathbf{k}_\perp \cdot \mathbf{h})}{k_\perp} \, d^2 \mathbf{k}_\perp \, \frac{k_\perp}{Q} \, d^2 \mathbf{k}_\perp \, d^2 \mathbf$$

as the Boer-Mulders convolution of Boer-Mulders TMD PDF and Collins TMD FF

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

6

 $\frac{(\boldsymbol{k}_{\perp} \cdot \boldsymbol{h})}{Q} f_q(x, k_{\perp}) D_q(z, p_{\perp})$ $\Delta f_{q^{\uparrow}/p}(x,k_{\perp}) \, \Delta D_{h/q^{\uparrow}}(z,p_{\perp})$

$$\mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}} = 2\pi \, \frac{\alpha^2}{x_{bj} y Q^2} \left(1 + \frac{\gamma^2}{2x_{bj}} \right) c_3 \, F_{UU}^{\cos(2\phi_h)}$$

> The third structure function $F_{UU}^{\cos(2\phi_h)}$, associated to the $\cos(2\phi_h)$ modulation of the cross section, consists of a twist-4 Cahn and a twist-2 Boer-Mulders contributions

$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} |_{\text{Cahn}} + F_U^{\text{Cons}}$$

where

$$egin{aligned} &F_{UU}^{\cos(2\phi_h)}ig|_{ ext{Cahn}} = 2\sum_q e_q^2 \, x \int d^2 oldsymbol{k}_\perp \, rac{2(oldsymbol{k}_\perp \cdot oldsymbol{h})^2 - k_\perp^2}{Q^2} \, f_q(x,k_\perp) D_q(z,p_\perp) \ &F_{UU}^{\cos(2\phi_h)}ig|_{ ext{BM}} \, = \, -\sum_q e_q^2 \, x \int d^2 oldsymbol{k}_\perp \, rac{P_{hT}(oldsymbol{k}_\perp \cdot oldsymbol{h}) + z \left[k_\perp^2 - 2(oldsymbol{k}_\perp \cdot oldsymbol{h})^2
ight]}{2k_\perp p_\perp} \, imes \ & imes \Delta f_{q^\uparrow/p}(x,k_\perp) \, \Delta D_{h/q^\uparrow}(z,p_\perp) \end{aligned}$$

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

 $\cos(2\phi_h)$ BM

- Kinematic coverage examples
 of produced π⁺ particles
 - 11 GeV and 8.8 GeV combined
- > Phase-space correlation between Q^2 and x_{bj} (top-left)
- Phase-space correlation between
 x_{bj} and z_h (top-right)

 Electron acceptance as function of angle and momentum forward angle (bottom left) and large angle (bottom right)

Summary and outlook

Solid Sidis -³*He setup*

Systematic uncertainties of unpolarized cross section: Acceptance uncertainty

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Summary and

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

> Other systematic uncertainty sources

Diffractive ρ fraction to SIDIS for $x_{bj} = 0.35, Q^2 = 4 (GeV/c)^2$ for D_2

Discrepancy between models agreed to 10% according to 6 GeV era study

Multiplied by ρ yield ratio; uncertainty is < 1%

SIMC HallC Simulation Package

Radiative correction factor for typical JLab kinematic setting at $\sqrt{s} = 4.90 \text{ GeV}$, $Q^2 = 8 (\text{GeV/c})^2$, $z_h = 0.375$, $x_{bi} = 0.48$ Discrepancy between two methods is around 2.5%

https://indico.bnl.gov/event/18419/contributions/80386/attachments/49832/ 85265/Jia Khachatryan SIDIS-RC.pdf

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

12

x	z	Q^2 $(\text{GeV}/c)^2$	$\pi_{ m H}^+$ (%)	$\pi_{ m H}^{-}$ (%)	$\pi_{ m D}^+$ (%)	π _D ⁻ (%)
0.22	0.55	1.59	6.1 ± 0.2	_	3.7 ± 0.1	5.1 ± 0.2
0.26	0.55	1.88	5.2 ± 0.1	_	3.5 ± 0.1	5.1 ± 0.1
0.30	0.55	2.17	4.6 ± 0.1	_	3.4 ± 0.1	5.3 ± 0.1
0.34	0.55	2.46	4.6 ± 0.1	_	3.3 ± 0.1	5.1 ± 0.1
0.38	0.55	2.75	4.2 ± 0.1	_	2.9 ± 0.1	4.8 ± 0.1
0.42	0.55	3.04	3.8 ± 0.1	_	2.7 ± 0.1	4.9 ± 0.1
0.46	0.55	3.32	3.7 ± 0.1	_	2.6 ± 0.1	4.2 ± 0.1
0.50	0.55	3.61	3.1 ± 0.1	_	2.3 ± 0.1	3.6 ± 0.1
0.54	0.55	3.90	3.2 ± 0.1	_	1.9 ± 0.1	3.1 ± 0.1
0.58	0.55	4.19	2.5 ± 0.1	-	1.5 ± 0.1	2.5 ± 0.1

Exclusive radiative tail yield to SIDIS yield ratio from 6 GeV era; decreasing with increasing Q² Discrepancy between models agreed to 10-15%; uncertainty to be < 0.6%

Systematic uncertainty budget for unpolarized cross section

Sources		
Acceptance correction		
Pion detection efficiency		
Electron detection efficiency		
Overall detection efficiency		
Radiative corrections		
Radiative backgrounds		
Vector meson production		
Luminosity determination		
Resolution		
Total		

Unpolarized cross-section and physics results

Summary and outlook

13

 \succ Produced π^+ unpolarized cross section at **11 GeV** beam energy

Unpolarízed cross-section and physics results

Summary and outlook

 \succ Produced π^+ unpolarized cross section at 8.8 GeV beam energy

Unpolarízed cross-section SoLID results

Summary and outlook

SoLID low- Q^2 region, first x_{bi} and first P_{hT} bin ranges

Solid Sidis -³He setup

 \succ Produced π^+ unpolarized cross section at **11 GeV** beam energy

Unpolarízed cross-section and physics results

Summary and outlook

SoLID high- Q^2 region

Solid Sidis -³He setup

Unpolarized cross-section framework

\succ Test of factorization

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

17

> Azimuthal modulation effect

 $d\sigma$ $\frac{\partial \mathcal{F}}{\partial x_{bj} \partial y \partial z_h \partial P_{hT}^2 \partial \phi_h} \equiv \mathcal{F}_{\mathcal{U}\mathcal{U}} = \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}} \cos 0 + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{B}} \cos(\phi_h) + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}} \cos(2\phi_h)$

Fitting ϕ_h distribution with a simple function: A(1 - B · cos(ϕ_h) - C · cos(2 ϕ_h))

Red points for π^+ , black points for π^-

$Q^2 < 1.5 \ GeV^2$ $M_T < 0.2 \ GeV/c$	$0.4 < z_h < 0.5$ $1 < Q^2 < 1.5 GeV^2$ - $0 < x_b < 0.25$ $0 < P_{hT} < 0.2 GeV/c$	$\begin{array}{c} 0.5 < z_h < 0.6 1 < Q^2 < 1.5 \; GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \; GeV/c \end{array}$
•	-	-
	- +	-
$Q^2 < 2 \ GeV^2$ $T_T < 0.2 \ GeV/c$	$ \begin{array}{c} 0.4 < z_h < 0.5 & 1.5 < Q^2 < 2 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array} $	$ \begin{array}{c} 0.5 < z_h < 0.6 & 1.5 < Q^2 < 2 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array} $
•	- • •	- 🛉 🛉
	-	-
$Q^2 < 2.5 \ GeV^2$ $M_T < 0.2 \ GeV/c$	$\begin{array}{c c} 0.4 < z_h < 0.5 & 2 < Q^2 < 2.5 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.5 < z_h < 0.6 \ 2 < Q^2 < 2.5 \ GeV^2 \\ 0 < x_b < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c \end{array}$
	- ↓ ↓	-
•	-	-
$Q^2 < 3 GeV^2$ $T_T < 0.2 GeV/c$	$0.4 < z_h < 0.5 \ 2.5 < Q^2 < 3 \ GeV^2$ $0 < x_b < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$	$\begin{array}{c} 0.5 < z_h < 0.6 & 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$
•		-
	-	●

Transverse momentum widths

$$F_{UU} = \sum_{q} e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{e^{-P_{hT}^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$
$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}}$$
$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}}$$

Least_Square =
$$\sum (pseudodata -$$

The fitting results shows (in GeV²):

$$< k_{\perp}^2 >= 0.5871 \pm 0.002, < p_{\perp}^2 >= 0.1165 \pm 0.0003$$

Three contours corresponding to confidence levels of 68%, 90% and 99%

Both Cahn and Boer-Mulders contributions included

All data from positive and negative polarities are considered

The fitting results differs from the model by 4%

where
$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle$$

Sold

Calibration beam time request for unpolarized cross-section measurement of this proposal

Target	Beam energy (GeV)	Field	Time (hour)	Purpose
H ₂ reference cell	2.2	Normal	1	Acceptance study
Empty reference cell	2.2	Normal	1	Backgrounds subtraction
Carbon	2.2	Normal	1	Acceptance study
H ₂ reference cell	4.4	Normal	1	Acceptance study
Empty reference cell	4.4	Normal	1	Backgrounds subtraction
Carbon	4.4	Normal	1	Acceptance study

We are not asking for new beam time !!!

Reference cell runs, optics and detector check : 3 Days

Calibration arrangement for related detector alignment and particle tracking, for unpolarized cross-section measurement

Unpolarized cross-section and physics results

20

- > With the high luminosity and large acceptance, the SoLID data could provide high precision cross section results with full azimuthal angle coverage
- > In our run group proposal, we show unpolarized SoLID SIDIS cross-section results
 - for π^+ particles at 11/8.8 GeV as well as π^- particles at 11 GeV beam energies
 - based on transversely/longitudinally polarized SoLID ³He targets
- Systematic uncertainty estimation
- \succ Cross-section pseudo-data obtained in 5-dimensional binning of $(x_{bi}, z_h, Q^2, P_{hT}, \phi_h)$
 - central points from theory calculations, plus SoLID statistical and systematic uncertainties
 - Cross-section with/without azimuthal modulations include uncertainties
- Some possible results extracted from the cross-section data
- Calibration beam time request for unpolarized cross-section measurement of this proposal

Thank You !

Acknowledgements: the entire SoLID collaboration

Supported in part by U.S. Department of Energy under contract number DE-FG02-03ER41231

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Unpolarized cross-section and physics results

Summary and outlook

21

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Momentum coverage: 1.0 - 7.0 GeV/c; Polar angular coverage: 8.0° - 14.8° (for hadron & electron ID)

Momentum coverage: 3.5 - 6.0 GeV/c; Polar angular coverage: 15.7° - 24.0° (for electron ID)

- > Momentum resolution: $\sim 2\%$; Polar angular resolution: 2 mrad
- > Azimuthal angular coverage: 2π ; Azimuthal angular resolution: 6 mrad
- \geq PID (electron): detection efficiency \geq 90%; pion contamination < 1%
- \geq PID (pion): detection efficiency \geq 90%; kaon contamination < 1%
- Total luminosity: 3.74 · 10³⁶ cm⁻² sec⁻¹
- \blacktriangleright Beam polarimetry: < 3%; Beam current: 15 μ A

> Many other details in SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report, <u>https://solid.jlab.org/</u>

Summary and outlook

Solid Sidis -³He setup

Analytical forms of the Cahn and Boer-Mulders azimuthal modulation given by

$$F_{UU}^{\cos(\phi_h)}\Big|_{\text{Cahn}} = -2 \frac{P_T}{Q} \sum_q e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{z_h \langle k_\perp^2 \rangle}{\langle P_T^2 \rangle} \frac{e^{-P_{hT}^2}}{\pi \langle P_T^2 \rangle}$$

$$F_{UU}^{\cos(\phi_h)}|_{BM} = 2e \frac{P_T}{Q} \sum_q e_q^2 x_{bj} \frac{\Delta f_{q^{\uparrow}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\uparrow}}(z_h)}{M_C} \frac{e^{-P_{hT}^2/\langle P_{T}^2 \rangle_{T}^2}}{\pi \langle P_T^2 \rangle_{T}^2}$$
$$\times \frac{\langle k_{\perp}^2 \rangle_{BM}^2 \langle p_{\perp}^2 \rangle_{C}^2}{\langle k_{\perp}^2 \rangle \langle p_{\perp}^2 \rangle} \left[z_h^2 \langle k_{\perp}^2 \rangle_{BM} \left(P_{hT}^2 - \langle P_T^2 \rangle_{BM} \right) + \langle p_{\perp}^2 \rangle_{T}^2 \right]$$

$$F_{UU}^{\cos(2\phi_h)}\Big|_{\text{Cahn}} = 2 \frac{P_T^2}{Q^2} \sum_q e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{z_h^2 \langle k_\perp^2 \rangle^2}{\langle P_T^2 \rangle^2} \frac{e^{-P_{hT}^2}}{\pi \langle P_T^2 \rangle^2}$$

$$F_{UU}^{\cos(2\phi_h)}\Big|_{BM} = -eP_T^2 \sum_q e_q^2 x_{bj} \frac{\Delta f_{q\uparrow/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q\uparrow}(z_h)}{M_C} \frac{e^{-P_{hT}^2/p_{T$$

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Unpolarízed cross-section and physics results

Summary and outlook

$$\frac{\langle \langle P_T^2 \rangle}{P_T^2 \rangle}, \\ \frac{P_T^2 \rangle_{BM}}{4} \times \\ \frac{P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times \\ \frac{\langle \langle P_T^2 \rangle}{P_T^2 \rangle}, \\ \frac{P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times \\ \frac{\langle \langle P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times \\ \frac{P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times$$

where

$$\langle P_T^2 \rangle_{BM} = \langle p_\perp^2 \rangle_C + z_h^2 \langle k_\perp^2 \rangle_{BM}$$

$$\langle p_\perp^2 \rangle_C = \frac{\langle p_\perp^2 \rangle M_C^2}{\langle p_\perp^2 \rangle + M_C^2}$$

$$\langle k_\perp^2 \rangle_{BM} = \frac{\langle k_\perp^2 \rangle M_{BM}^2}{\langle k_\perp^2 \rangle + M_B^2 M}$$

$$M_C^2 \text{ and } M_{BM}^2 \text{ and all the other functional forms to be found in }$$

$$JHEP 06, 007 (2019)$$

$$and$$

$$https://github.com/TianboLi$$

$$u/LiuSIDIS$$

Jefferson Lab

24

Transverse momentum dependence

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Unpolarízed cross-section and physics results

Summary and outlook

Jefferson Lab

SOLD

 \succ Produced π^- unpolarized cross section at **11 GeV** beam energy

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Unpolarízed cross-section and physics results

Summary and outlook

SoLID low- Q^2 region, first x_{bi} and first P_{hT} bin ranges

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Solid Sidis -³*He setup*

 \succ Produced π^- unpolarized cross section at **11 GeV** beam energy

Shuo Jia, Vlad Khachatryan, Ye Tian: SoLID Collaboration Meeting, June 21-22 (2024), ANL

Unpolarízed cross-section and physics results

Summary and outlook

SoLID high- Q^2 region

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Target Bea H_2 reference cell Empty reference cell Carbon H₂ reference cell Empty reference cell Carbon H₂ reference cell Empty reference cell Carbon H₂ reference cell Empty reference cell Carbon

Calibration arrangement for related detector alignment and particle tracking, for unpolarized cross-section measurement

Unpolarized cross-section and physics results

am energy (GeV)	Field	Time (hour)
2.2	50%	1
2.2	50%	1
2.2	50%	1
2.2	0%	1
2.2	0%	1
2.2	0%	1
4.4	50%	1
4.4	50%	1
4.4	50%	1
4.4	0%	1
4.4	0%	1
4.4	0%	1

28