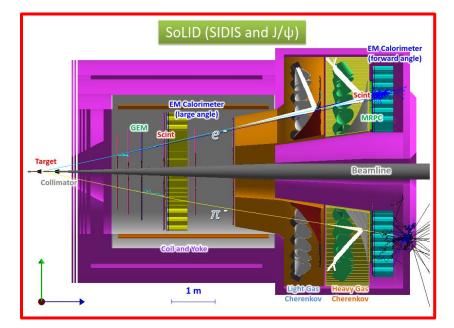
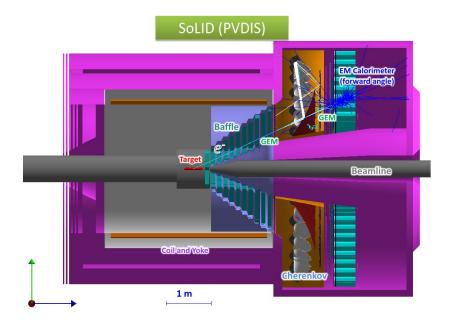
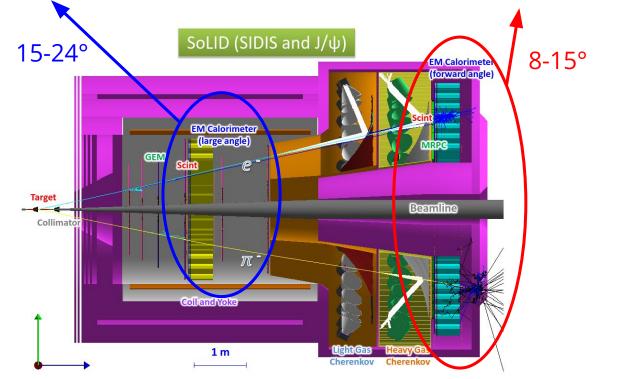
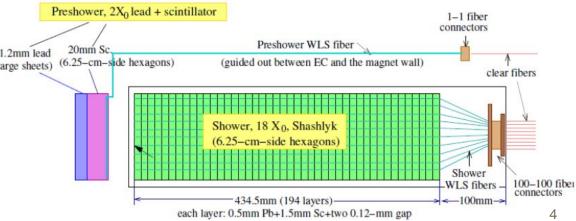
Future Plan on ECal and SPD


SoLID Collaboration Meeting 2024 Richard L. Trotta and SoLID ECal WG



Detector System of SoLID

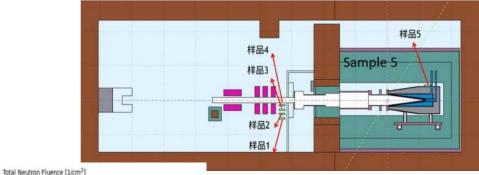

• The detector system of SoLID includes two configurations: the "SIDIS and J/ ψ " configuration and the "PVDIS" configuration.

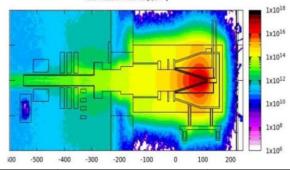

SIDIS and J/ ψ Configuration

 The "SIDIS and J/ψ" configuration consists of two groups of sub-detectors: the Large Angle Detector group (LAD) and the Forward Angle Detector group (FAD).

ECal Overview

- Preshower: 2X₀ pre-radiator and a 2-cm thick scintillator with wave-length shifting (WLS) fibers embedded for light readout
- Shower: 18X₀ long, based on the Shashlyk-type sampling with alternating layers of 1.5-mm thick scintillator and 0.5-mm thick lead absorber layers.
- A unique aspect of SoLID's ECal is its light readout
 - Due to high radiation of SoLID, all WLS fibers will be connected to clear fibers and light will be routed outside the solenoid magnet for readout by PMTs
- ~1800 modules, each with a transverse size 100 cm² in a hexagon shape such that they can be rearranged between the two configurations.
 ~1800 modules, each with a transverse size 100 cm² in a hexagon shape such that they can be rearranged between the two configurations.




SPD Overview

- The Scintillator Pad Detector (SPD) will be used at both large-angle (10:1) and forward-angle (5:1) locations of the SIDIS configuration
- Reduce ECal-based trigger rates by requiring coincidence signals between the SPD and the ECal.
- The large-angle SPD (LASPD): TOF with a timing resolution goal of 150 ps
 - 2-cm thick long, wedge shape scintillators with readout directly by field-resistant fine-mesh PMT on the edge of the solenoid field
- The forward-angle SPD (FASPD): 240 pieces of thin, large scintillator pads with WLS fibers embedded on the surface.
 - Light from the WLF fibers will be guided through clear fibers in a similar manner as for the preshower ECal.

Irradiation test (1)

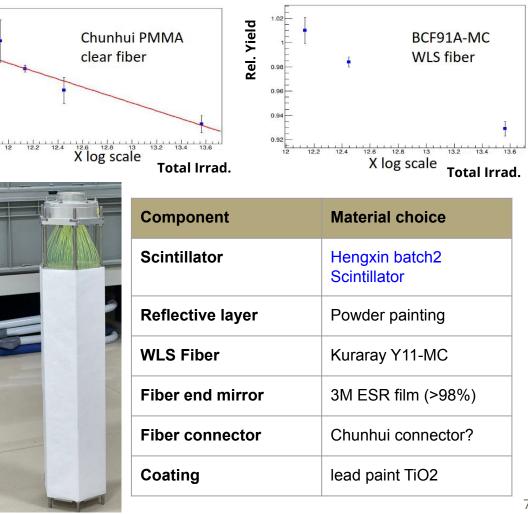
- Started in 2021 at Institute of Modern Physics, Lanzhou, China
 - SDU/IMP group: Cunfeng Feng,
 Dong Liu, Mengjiao Li, Ye Tian

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Total Irrad. [MeV/cm²] (sim. w/ <i>δ</i> ~10%)	8.6e11	1.4e12	2.8e12	3.7e13	1.1e14
Material	Clear fiber	Clear fiber BCF91A-MC	Clear fiber BCF91A-MC	Clear fiber BCF91A-MC	BCF91A-MC

Irradiation test (2)

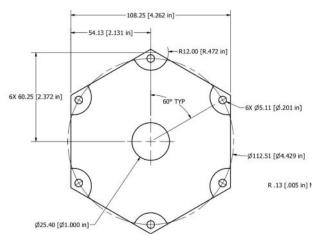
- Started in 2021 at Institute of Modern Physics, Lanzhou, China
 - SDU group: Cunfeng 0 Feng, Dong Liu
 - Reflector layer test Ο
 - Coating Ο
 - Fiber testing Ο
 - Attenuation length, performance, end reflector selection, connectors

Atten. Length

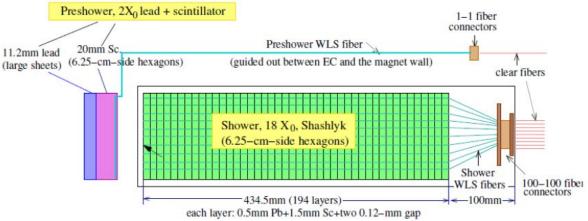

17

16

14

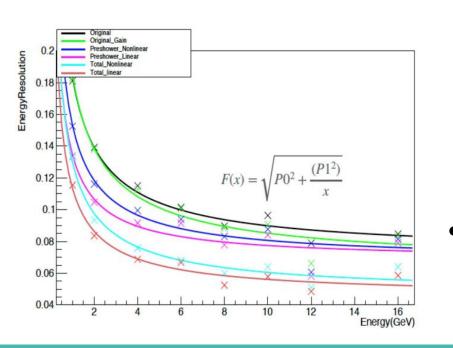

13

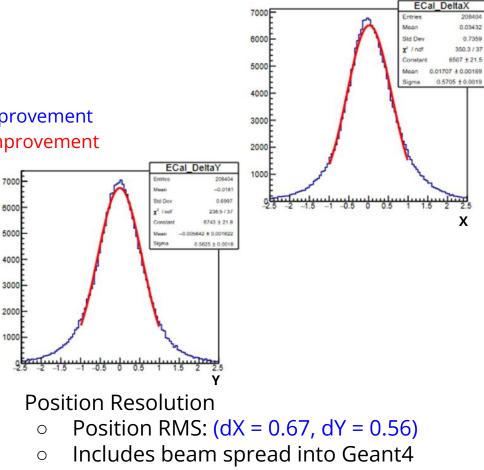
- For all tested fibers and scintillators:
 - No difference in appearance and Ο mechanical properties
 - Same color/elasticity after Ο irradiation



FTBF Result (1)

- Performed 2021-2022
 - UVA group: Jixie Zhang,
 Syracuse group: Ye Tian
 - Fermilab Test Beam Facility (FTBF)


SoLID shashlyk style ECal design

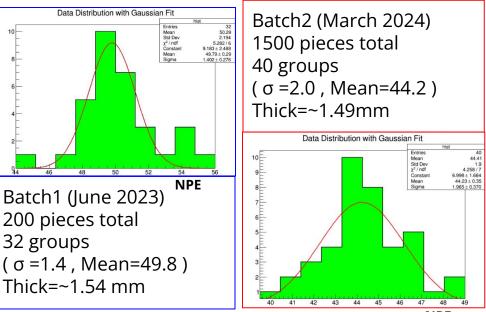


- Diameter of the Supporting Rod of Ecal Module
 - Simulation done by Ye Tian shows that the 8-mm diameter rods will have noticeable effect on the ECal performance, but 6-mm diameter is acceptable.

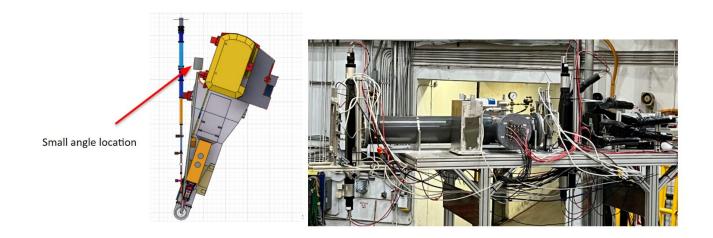
FTBF Result (2)

- Energy Resolution
 - Gain and preshower correction: ~10% improvement
 - Position dependence correction: ~30% improvement

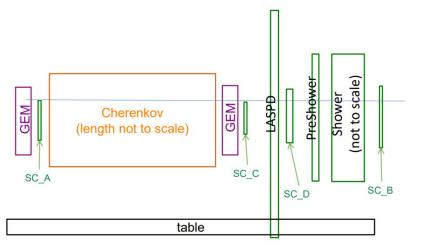
ECal Preshower Readout


- Starting in next few weeks
 - Argonne group: Junqi Xie
 - PMT samples for readout, lifetime
 - UVA + JLab Detector group
 - ECal scintillator simulations
 - PMT Readout studies
 - MCP-PMT (R10754)
 - MAPMT (R11265, H12445)
 - Design radiation-hard bases for the MAPMTs and another type of regular PMTs, with pre-amp, similar to what NPS experiments are using now in Hall C.

ECal Scintillator Readout

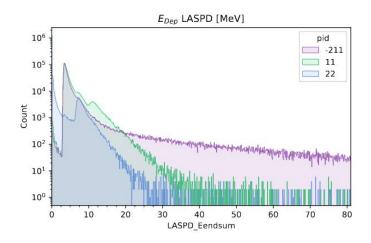

- Started 2023
 - SDU group
 - Kedi Scintillator: old hole design (Thick=~1.49 mm)
 - Hengxin Scintillator: new hole design, new injection mold
 - Each group is 5 pieces of scintillators
 - Scintillator transmissivity & reflectivity test
 - Averages: 87.5 (Hengxin) vs
 87.3 (light Kedi)
 - Reflectivity test for lead
 - Averages: 88.5 (current) vs
 83.6 (7 towers) vs 88.4 (Nica)

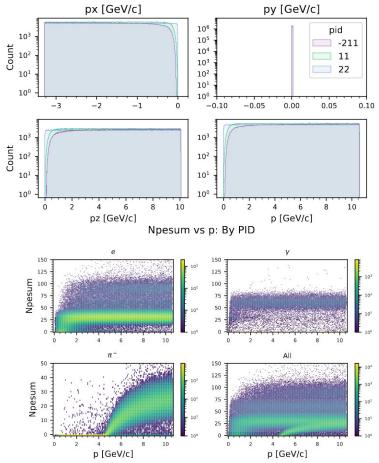
Cosmic test


Jlab Beam Test

- Performed 2022-2023
 - Goals
 - High-rate and high-radiation environment expected for SoLID
 - Test Ecal and SPD
 - Test GEMs with APD readout and the DAQ system
 - Can ECal distinguish pion MIP from background, and electrons from pions?
 - See <u>Michael Nycz</u> and <u>Ye Tian's</u> talks

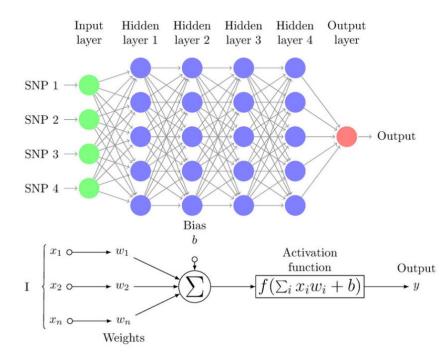
PID Using ML Methods for SoLID Beam Test Analysis (1)

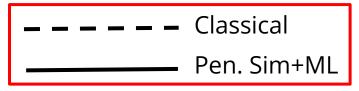

- Started in 2023
 - Started Summer 2023 SULI (Darren Upton)
 - UVA group: Richard Trotta, Mohammed Rafi, Taylor Conner (UG), Kadosa Schaffer (UG)
 - Integrate machine learning approaches within the SoLID collaboration, employing the ECal beam test (M. Nycz) to showcase their practical benefits.
 - By utilizing simulated events (Ye Tian) for the beam test, machine learning-assisted particle identification (ML-Assisted PID) methods are used to apply to the beam test data.



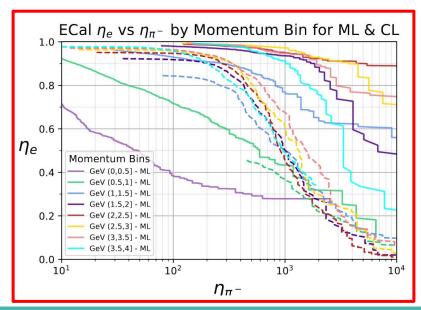
 Preliminary samples of e and π ^{+/-} have already been determined, yet further actions are necessary to enhance the agreement between simulation and experimental data.

PID Using ML Methods for SoLID Beam Test Analysis (2)

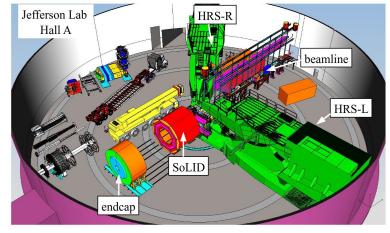

- As a first step, "pencil simulations" were used
- Starting with the "simplest" case, can control for variables, such as particles tracks, statistics-limiting geometric effects, and other variables that confound analyses.


PID Using ML Methods for SoLID Beam Test Analysis (3)

- For this work, primarily explored a fully-connected, Multi-Layer Perceptrons (MLP) neural networks
- Activation function: ReLU for hidden layers
- Final value is compared to the true value and the optimizer backward propagates to change weights and biases such that the output matches the true value for this event
 - Used ADAM optimizer, which is an improved Stochastic Gradient Descent (SGD) algorithm
- By repeating this process of forward and backward propagating, the ML model converges to an ideal set of weights and biases

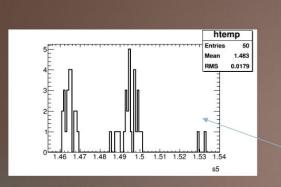

PID Using ML Methods for SoLID Beam Test Analysis (4)

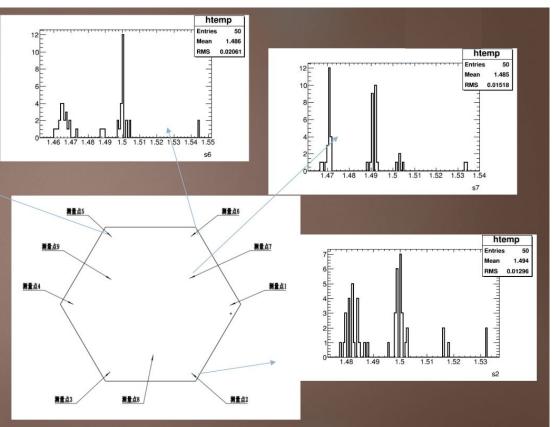
- Samples are divided into separate momentum bins of width 0.5 GeV/c to check effect of ML classification on pencil sim
- Allows understanding the limits using only the ECal to distinguish between e and π^-
- For this process, binned charged particles then trained individual classifiers for each bin, resulting in eight separate classifiers. To validate the results
 - Traditional cuts were applied to the same samples as the ML model


https://solid.jlab.org/DocDB/0004/000495/001/SoLID_beamtest_ML_PID_Upton.pdf

- Summer 2024, expand studies from pencil simulations to BT data
 Train NN with BT data
 - Apply trained NN on full simulations

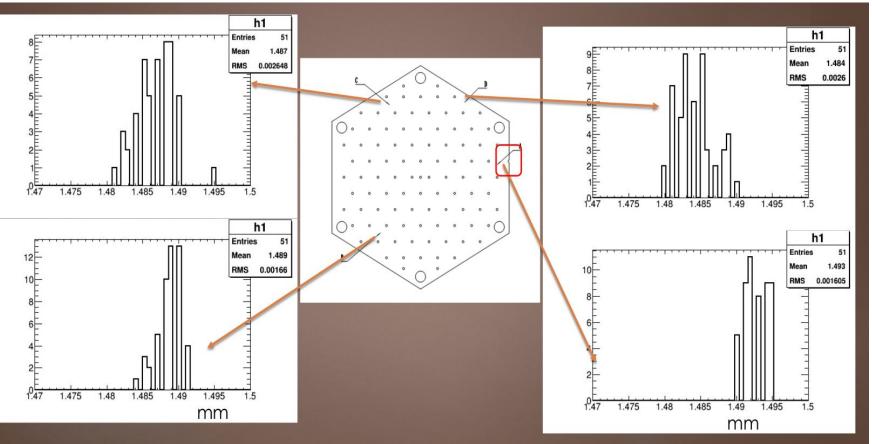
Outlook


- Irradiation fiber test
 - Started in 2021
 - No difference in appearance and mechanical properties
 - Same color/elasticity after irradiation
- FTBF
 - Performed 2021-2022
 - Energy resolution
 - Gain and preshower correction: ~10% improvement
 - Position dependence correction: ~30% improvement
 - Position Resolution
 - Position RMS: (dX = 0.67, dY = 0.56)
- ECal Scintillator and Preshower Readout
 - SDU: Started in 2021, scintillator readout [ONGOING]
 - UVA: Beginning summer 2024, PMT readout [ONGOING]
- Jlab Beam Test and Simulations
 - Beam test 2022-2023, possible follow-up studies (See Michael Nycz's talk)
 - Simulations started 2022 [ONGOING] (See <u>Ye Tian's</u> talk)
- PID Using ML Methods for SoLID Beam Test Analysis
 - Started 2023 [ONGOING]
 - \circ ~ Preliminary samples of e and $\pi^{\scriptscriptstyle +\!/-}$ have already been determined



Thickness of kedi scintillator

Slide from SDU group



Different thickness for one point about ± 0.02 mm

Thickness of Hengxin Batch2 scintillator

Slide from SDU group

