Linear divergence under lattice regularization

Yi-Bo Yang 2021/04/27

Large momentum effective theory

The light-cone PDF is defined by

$$\begin{split} q(x,\mu^2) \; = \; \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P | \overline{\psi}(\xi^-) \gamma^+ \\ & \times \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0) | P \rangle \end{split}$$

and can be accessed by,

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \left\{ \delta(1 - \frac{x}{y}) - \frac{\alpha_s C_F}{2\pi} C_1 \left(\frac{x}{y}, \frac{y P_z}{\mu}, \frac{y P_z}{p_z^R}, \frac{\mu_R^2}{p_z^R^2} \right) \right\}$$

$$\int_{-\infty}^{\infty} \frac{e^{iy P_z z}}{4\pi} \langle P | \bar{\psi}(z) \gamma_t U_z(z,0) \psi(0) | P \rangle_{p^2 = \mu_R^2, p_z = p_z^R}^R$$

$$+ \mathcal{O}\left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2}, \alpha_s^2 \right), \qquad \langle P | \bar{\psi}(z) \gamma_t U_z(z,0) \psi(0) \rangle_{p^2 = \mu_R^2, p_z = p_z^R}^R$$

quasi-PDF

with the lattice calculation of the proper renormalized quasi-PDF,

$$\langle P \mid \mathcal{O}_t(z) \mid P \rangle_{p^2 = \mu_R^2, p_z = p_z^R}^R, \ \mathcal{O}_t = \bar{\psi}(0) \gamma_t U_z(0, z) \psi(z)$$

The lattice regularization is highly non-trivial

- The lattice regularization is sensitive to the fermion and gauge actions we used.
- The corresponding Feynman rules are sensitive;
- The quantum corrections are also sensitive.
- The conclusion using the dimensional/ cut-off regularization, should be verified under the lattice regularization with several fermion and gauge actions.

The quark self energy with different discretized actions are:

$$Z_Q^{RI}(p^2) = 1 + \frac{g^2 C_F}{16\pi^2} [(1 - \xi)\log(a^2 p^2) + B_Q + 4.79\xi] + O(a^2 p^2) + O(g^4)$$

		$$B_Q$$ Wilson Iwasaki ${\rm Iwasaki}^{HYP}$		Gauge actions	
Fermion actions	Wilson	11.85	3.32	-4.22 -7.56	

Tadpole diagrams

Under Lattice regularization

$$O_{\delta z}^{(2)\mu\nu,AB}(p,q,k) = -g^2 \{T^A, T^B\} \gamma_3 \delta^{\mu 3} \delta^{\nu 3} \delta(p-q) e^{-ip_3 \delta z} \frac{2\sin^2(\frac{k_3}{2}\delta z)}{(\frac{2}{a}\sin\frac{k_3 a}{2})^2}$$

$$\int_{-\pi}^{\pi} \frac{dp^{4}}{(2\pi)^{4}} S_{g}(p)_{\mu\mu} \frac{\sin^{2}\left(\frac{z}{a} \frac{p_{\mu}}{2}\right)}{\sin^{2}(p_{\mu}/2)} = \int_{-\pi}^{\pi} \frac{dp^{3}}{(2\pi)^{3}} S_{g}(\overline{p})_{\mu\mu} \cdot \int_{-\pi}^{\pi} \frac{dp_{\mu}}{(2\pi)} \frac{\sin^{2}\left(\frac{z}{a} \frac{p_{\mu}}{2}\right)}{p_{\mu}^{2}/4} + \mathcal{O}(a^{0}, \log a)$$

$$= \int_{-\pi}^{\pi} \frac{dp^{3}}{(2\pi)^{3}} S_{g}(\overline{p})_{\mu\mu} \cdot \left(-\frac{2}{\pi^{2}} + \frac{|z|}{a}\right) + \mathcal{O}(a^{0}, \log a),$$

Action	e_2
Wilson	-19.9548
TL Symanzik	-17.2937
Iwasaki	-12.9781

$$Z_{\Gamma}(z) = 1 + \frac{\alpha_s C_F}{4\pi} (e_2 \frac{|\delta z|}{a} + \dots)$$
But the cutoff case is
$$-2\pi^2 = -19.7392\dots$$

 The slide I used three years ago at USQCD all hands meeting 2018.

• The linear divergence in DA seems to be cancelled while the uncertainty at a=0.06 fm is still large.

• Whether we can have a more accurate check?

Linear divergence cancellation

Example II

 The RVMOM renormalized and normalized quasi-PDA at a=0.06/0.12 fm:

$$\langle \eta_s(P_z = 1.3 \text{GeV}) | \bar{\psi}(z) \gamma_z \gamma_5 U_z(z, 0) \psi(0) | 0 \rangle$$

- The renormalized results at a=0.12 fm and a=0.06 fm agree with each other well up to z~0.5 fm.
- The present statistics at a=0.06 fm is ~1/4 of that at a=0.12 fm. It will be improved to provide a stronger check.

Outline

- Hadron matrix elements
- Vacuum matrix elements
- Quark matrix elements (RI/MOM)
- Discussion

Hadron matrix elements 3pt (quasi-PDF matrix element)

$$R(t_2, t, z; H) \equiv \frac{\langle O_H(t_2) \sum_{\vec{x}} O_{\gamma_t}(z; (\vec{x}, t)) O_H^{\dagger}(0) \rangle}{\langle O_H(t_2) O_H^{\dagger}(0) \rangle}$$

$$= \langle H | O_{\gamma_t}(z) | H \rangle$$

$$+ \mathcal{O}(e^{-\delta mt}) + \mathcal{O}(e^{-\delta m(t_2 - t)}) + \mathcal{O}(e^{-\delta mt_2}),$$

- The linear divergence should be independent to the external state.
- And then one can switch to the rest frame for a more accurate check.
- The source-sink separation:
- Pion: T/2 (>3fm)
- Nucleon: ~0.72 fm

Hadron matrix elements

3pt (quasi-PDF matrix element)

- Under the lattice regularization, a normalization is required to make the vector charge $\langle H | \mathcal{O}_t(0) | H \rangle$ to be integer.
- Such a normalization:
- A combination of the discretization error and also finite $\mathcal{O}(\alpha_s)$ correction.
- Not sensitive to the gauge action after the HYP smearing.
- Dominate by the $\mathcal{O}(\alpha_s)$ correction at small lattice spacing.

Hadron matrix elements 3pt (quasi-PDF matrix element)

- We considered two fermion actions:
- Clover valence: widely used, cheap, with additive chiral symmetry breaking which is $\mathcal{O}(\alpha_s^2/a)$
- Overlap valence: expensive, perfect chiral symmetry
- HISQ sea: also chiral fermion, while can have the mixed action effect when the valence quark uses a different action.
- The pion matrix elements with two kinds of action are consistent with each other.

$$\frac{\langle \pi \, | \, \mathcal{O}_t(z) \, | \, \pi \rangle_{clover}}{\langle \pi \, | \, \mathcal{O}_t(z) \, | \, \pi \rangle_{overlap}}$$

Hadron matrix elements

3pt (quasi-PDF matrix element)

- Ratio between the nucleon and pion matrix elements:
- Some lattice spacing dependence at large z;
- Seems to converge at small lattice spacing.
- Verified the argument on the external state independence of the linear divergence.

$$\frac{\langle N | \mathcal{O}_t(z) | N \rangle}{\langle \pi | \mathcal{O}_t(z) | \pi \rangle}$$

Outline

- Hadron matrix elements
- Vacuum matrix elements
- Quark matrix elements (RI/MOM)
- Discussion

Vacuum matrix elements Wilson loop

 Based on the Wilson loop at different lattice spacings, we can have

$$\delta m \sim 0.2/a$$
.

- We can renormalize the pion matrix elements with a renormalization factor $e^{\delta m z}$.
- The small z region still have obvious divergence.

Vacuum matrix elements quasi-PDF operator

- With the Clover fermion (the overlap case can be different).
- The effective decay rate of $\langle \mathcal{O}_t(t) \rangle$:

$$m^{V1}(z) = \frac{1}{a} \log(\frac{\langle \mathcal{O}_t(t-a) \rangle}{\langle \mathcal{O}_t(t) \rangle})$$

• That of $\mathcal{O}_{sq}(z,t) = \langle \mathcal{O}_t(z,t) \mathcal{O}_t^{\dagger}(z,0) \rangle$:

$$m^{V2}(z) = \frac{1}{a} \log(\frac{\langle \mathcal{O}_{sq}(z-a,t_0) \rangle}{\langle \mathcal{O}_{sq}(z,t_0) \rangle})$$

• That of Wilson loop $\langle U(r,t) \rangle$

$$m^{LP}(r) = \frac{1}{a} \log(\frac{\langle U(r, t-a) \rangle}{\langle U(r, t) \rangle})$$

• As in the figure, we have $m^{V2}(z) \simeq m^{LP}(t_0)$

Vacuum matrix elements Wilson line

- The vacuum expectation value can also be considered as a renormalization factor for the linear divergence.
- But the residual linear divergence is still obvious at all the z-region.
- An interesting observation is, the linear divergence from the Wilson link under two gauges seems to be the same in the continuum limit.

Outline

- Hadron matrix elements
- Vacuum matrix elements
- Quark matrix elements (RI/MOM)
- Discussion

Quark matrix elements $\mathcal{M}_{t}^{a}(\Gamma,z) = \text{Tr}[\Gamma(S(p))^{-1}\langle \sum_{x} S^{\dagger}(p,x)\gamma_{t}U_{z}(\overrightarrow{n}_{z}z)S(p,x+\overrightarrow{n}_{z}z)\rangle\langle S(p)\rangle^{-1}]/Z_{q}$ Setup

$$\mathcal{M}_t^b(\Gamma, z) = \text{Tr}[\gamma_t \langle S(p) \rangle^{-1} \langle \sum_{x}^{x} S^{\dagger}(p, x) \Gamma U_z(\overrightarrow{n}_z z) S(p, x + \overrightarrow{n}_z z) \rangle \langle S(p) \rangle^{-1}] / Z_q$$

- Momentum $(p_x, p_y, p_z, p_t) = (n, n, 0, 0) 2\pi/L;$
- Wilson link along z direction;
- Z_q is defined from the vector current conservation and then we have $\mathcal{M}_t^{a,b}(\gamma_t,0) = \langle \pi | \mathcal{O}_t | \pi \rangle$.
- Such a setup can avoid the mixing between gamma matrices completely.

Quark matrix elements

Cancellation on UV divergence

- The ratios with different actions agree with each other in the continuum limit, with in subpercentage uncertainty.
- It shows that the UV divergence including the linear one is independent of the external offshell momentum.
- The other momenta (likes (0,0,0,0) or (7,7,0,0)) would be helpful to confirm the above argument.

$$\frac{\operatorname{Tr}[\gamma_{t}\langle q \mid \mathcal{O}_{t} \mid q \rangle]_{p=(3,3,0,0)2\pi/L}}{\operatorname{Tr}[\gamma_{t}\langle q \mid \mathcal{O}_{t} \mid q \rangle]_{p=(5,5,0,0)2\pi/L}}$$

Quark matrix elementsRenormalized ME

• Renormalized ME:
$$\frac{\langle \pi | \mathcal{O}_t | \pi \rangle}{\text{Tr}[\gamma_t \langle q | \mathcal{O}_t | q \rangle]_{p=(3,3,0,0)2\pi/L}}$$

- All the cases will suffer from the residual linear divergence if the lattice spacing is small enough.
- Upper panel: Clover on HISQ (Compare with the overlap on HISQ and Twistedmass on HISQ cases at a~0.06 fm), about 24% residual linear divergence left.
- Lower panel: Overlap on HISQ, about 5% residual linear divergence.

Quark matrix elementsRenormalized ME

- Renormalized ME: $\langle \pi | \mathcal{O}_t | \pi \rangle$ $\overline{ \text{Tr}[\gamma_t \langle q | \mathcal{O}_t | q \rangle]_{p \sim 1.8 \text{GeV}} }$
- Unitary clover case using the CLS ensembles, without any HYP smearing on the fermion action.
- In the range a~0.06-0.10 fm, the joint effect of the discretization error and residual linear divergence makes the results to be somehow similar to each other.

- With HYP smearing on the Wilson link
- About 18% residual linear divergence left.

- W.o. HYP smearing on the Wilson link
- The original linear divergence w.o. HYP smearing is much larger.
- And then the residual linear divergence is relatively smaller (about 5%).

Quark matrix elements

Non-zero momentum case

 It is also interesting to consider another widely used renormalization

$$\frac{\langle \pi | \mathcal{O}_t | \pi \rangle}{\text{Tr}[p \langle q | \mathcal{O}_t | q \rangle / p_t]_{p=(0,0,1.3,1.3)\text{GeV}}}$$

- With the momentum along the Wilson link direction, the additional imaginary part is introduced.
- Most of the linear divergence can be moved to the imaginary part, in the z<0.7 fm region.

Quark matrix elementsWithout link

- We can also consider a special case where the gauge link is removed from the quark matrix element.
- The matrix element approaches to 1 at the large z limit.
- The lattice spacing dependence at small z would be the logarithmic divergence.
- The residual linear divergence is not coming from here.

$$\mathcal{M}_{t}^{(0)}(z) = \text{Tr}[\gamma_{t}\langle S(p)\rangle^{-1}\langle \sum_{x} S^{\dagger}(p,x)\gamma_{t}S(p,x+\overrightarrow{n}_{z}z)\rangle\langle S(p)\rangle^{-1}]$$

Outline

- Hadron matrix elements
- Vacuum matrix elements
- Quark matrix elements (RI/MOM)
- Discussion

Discussion

Brief summary

- Linear divergence in $\langle H | \mathcal{O}_t | H \rangle$ is independent to the fermion action or hadron, in the cases we checked.
- The linear divergence on the Wilson link would be independent with the gauge we used (Coulomb, Landau), in the continuum limit.
- The UV divergence of $\langle q | \mathcal{O}_t | q \rangle$ is independent from the IR momenta, but depends on the fermion action.
- The linear divergence disappear in $\langle q | \mathcal{O}_t | q \rangle$ if the Wilson link is removed.

Discussion Diagram analysis

Discussion

Possibility reason

- Linear divergence in $\langle H | \mathcal{O}_t | H \rangle$ is independent to the fermion action or hadron, in the cases we checked.
- The linear divergence on the Wilson link would be independent with the gauge we used (Coulomb, Landau), in the continuum limit.
- The UV divergence of $\langle q | \mathcal{O}_t | q \rangle$ is independent from the IR momenta, but depends on the fermion action.
- The linear divergence disappear in $\langle q | \mathcal{O}_t | q \rangle$ if the Wilson link is removed.

- No linear divergence at 1-loop level;
- The external leg can have the action-dependent $\mathcal{O}(\alpha_s)$ correction.
- Thus some action-dependent $\mathcal{O}(\alpha_s^2/a)$ correction would exist.