Compton amplitude and the nucleon structure functions on the lattice via the Feynman-Hellmann theorem

K. Utku Can

CSSM, The University of Adelaide
partially based on: PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat].

Lattice Hadron Structure Journal Club
Argonne National Laboratory, May 24, 2021

in Collaboration with

the members of CSSM - UKQCD - QCDSF

- Adelaide:
- A. Hannaford-Gunn,
- E. Sankey,
- K. Y. Somfleth,
- R. D. Young,
- J. M. Zanotti
- UK:
- R. Horsley (Edinburgh),
- P. E. L. Rakow (Liverpool)
- Germany:
- H. Perlt (Leipzig),
- G. Schierholz (DESY, Hamburg),
- H. Stüben (Hamburg),
- Japan:
- Y. Nakamura (RIKEN, Kobe)

Motivation

- Nucleon structure (leading twist)
- Structure functions from first principles
- Understanding the behaviour in the high- and low-x regions

Motivation

- Scaling
- Q^{2} cuts of global QCD analyses
- Power corrections / Higher twist effects
- Twist-4 contributions
- Kinematic effects

Motivation

- New physics searches
- Weak charge of the proton
- $\gamma-W / Z$ interference

Motivation

- Technical issues
- Operator mixing/renormalisation issues in OPE approach in LQCD

- 4-point functions are costly; harder to tackle
- Feynman-Hellmann approach needs 2-point functions only

- Forward Compton Amplitude \& the Nucleon Structure Functions
- Feynman-Hellmann Theorem \& the Compton Amplitude
- Moments of the Nucleon Structure Functions
- Scaling and Power Corrections/Higher-twist effects

Forward Compton Amplitude \& the Nucleon Structure Functions

\author{

- Feynman-Hellmann Theorem \&
}
the Comnton Δ mnlitudeScaling and Power Corrections/Higher-twist effects

DIS and the Hadronic Tensor

Deep $\left(Q^{2} \gg M^{2}\right)$ inelastic $\left(W^{2} \gg M^{2}\right)$ scattering (DIS)

- k, k^{\prime} : incoming, outgoing lepton momenta
- \boldsymbol{p} : 4-momentum of the incoming nucleon of mass \boldsymbol{M}
- $W^{2}=(p+q)^{2}$: invariant mass of the recoiling system, \boldsymbol{X}
- $x=\frac{Q^{2}}{2 p \cdot q}$: Bjorken scaling variable
- $\omega=x^{-1}$: inverse Bjorken variable
- $Q^{2}=-q^{2}$: photon virtuality, momentum transferred to the nucleon

DIS and the Hadronic Tensor

Deep $\left(Q^{2} \gg M^{2}\right)$ inelastic $\left(W^{2} \gg M^{2}\right)$ scattering (DIS)

$$
d \sigma \sim L_{j}^{\mu \nu} W_{\mu \nu}^{j} \quad j=\gamma, Z, \text { and } \gamma Z(\text { neutral) or } W(\text { charged })
$$

hadronic tensor

$$
\begin{array}{r}
W_{\mu \nu}=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z} \rho_{s s^{\prime}}\left\langle p, s^{\prime}\right|\left[J_{\mu}(z), J_{\nu}(0)\right]|p, s\rangle \\
\rho_{s s^{\prime}}=\frac{1}{2} \delta_{s s^{\prime}}
\end{array}
$$

$$
W_{\mu \nu}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right) \text { Structure Functions }
$$

$$
+\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu} \frac{F_{2}\left(x, Q^{2}\right)}{p \cdot q}\right.
$$

Forward Compton Amplitude

Nucleon Structure Functions

- Consider:

$$
\begin{aligned}
& \mu=\nu=3 \text { and } p_{z}=q_{z}=0 \\
& T_{33}(p, q)=\mathscr{F}_{1}\left(\omega, Q^{2}\right)
\end{aligned}
$$

- Optical theorem relates the Compton SF to DIS SF $\operatorname{Im} \mathscr{F}_{1}\left(\omega, Q^{2}\right)=2 \pi F_{1}\left(x, Q^{2}\right)$ so we can write down a dispersion relation:

$$
\left.\begin{array}{rl}
\begin{array}{c}
\overline{\mathscr{F}}_{1}\left(\omega, Q^{2}\right)
\end{array} & =\frac{2 \omega^{2}}{\pi} \int_{1}^{\infty} d \omega^{\prime} \frac{\operatorname{Im} \mathscr{F}_{1}\left(\omega^{\prime}, Q^{2}\right)}{\omega^{\prime}\left(\omega^{2}-\omega^{2}-i \epsilon\right)} \\
\text { disperartion relation }
\end{array}\right)
$$

| Nucleon Structure Functions

- As long as $\left|\omega_{0}\right|<1$,

Minkowski and Euclidean amplitudes are identical

- $\left|\omega_{0}\right|<1$ means states propagating between currents cannot go on-shell

Nucleon Structure Functions

$$
\begin{aligned}
& \text { Compton amplitude with } \\
& \mu=\nu=3 \text { and } p_{z}=q_{z}=0
\end{aligned} \quad T_{33}(p, q)=\mathscr{F}_{1}\left(\omega, Q^{2}\right) \quad \text { Compton SF }
$$

$$
\omega=\frac{2 p \cdot q}{Q^{2}}
$$

$\begin{aligned} \overline{\mathscr{F}}_{1}\left(\omega, Q^{2}\right) & =4 \omega^{2} \int_{0}^{1} d x \frac{x F_{1}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}} \quad \begin{array}{l}\text { subtracted } \\ \text { disperison reation }\end{array} \\ & =\sum_{n=1}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right) \quad, \text { where are at the unphysical }|\omega|<1 \text { region, no nee } M_{2 n}^{(1)}\left(Q^{2}\right)=2 \int_{0}^{1} d x x^{2 n-1} F_{1}\left(x, Q^{2}\right)\end{aligned}$
Mellin moments of the nucleon structure function $F_{1}\left(x, Q^{2}\right)$
Once we have the Compton amplitude data, we can extract the Mellin moments!

$$
T_{33}(p, q)=\sum_{n=1}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right)
$$

Shape of the Compton Amplitude

NNPDF3.1 NNLO

$$
\begin{gathered}
100 \text { sets } \\
Q^{2}=9 \mathrm{GeV}^{2} \\
\text { (DIS region) }
\end{gathered}
$$

$$
T_{33}(p, q)=\sum_{n=1}^{\infty} 2 \omega^{2 n}\left(M_{2 n}^{(1)}\left(Q^{2}\right)\right)
$$

- Feynman-Hellmann Theorem \& the Compton Amplitude
- Moments of the Nucleon Structure Functions Scaling and Power Corrections/Higher-twist effects

|FH Theorem at 1st order

- in Quantum Mechanics:

$$
\frac{\partial E_{\lambda}}{\partial \lambda}=\left\langle\phi_{\lambda}\right| \frac{\partial H_{\lambda}}{\partial \lambda}\left|\phi_{\lambda}\right\rangle \quad \begin{aligned}
& \mathrm{H}_{\lambda}: \text { perturbed Hamiltonian of the system } \\
& \mathrm{E}_{\lambda}: \text { energy eigenvalue of the perturbed system } \\
& \phi_{\lambda}: \text { eigenfunction of the perturbed system }
\end{aligned}
$$

- expectation value of the perturbation of a system is related to the shift in the energy eigenvalue
- in Lattice QCD: energy shifts in the presence of a weak external field

$$
S \rightarrow \underset{\substack{\text { real parameter }}}{S(\lambda)=S}+\lambda d^{4} x \mathcal{O}(x) \xrightarrow{\text { e.g. local bilinear operator }} \underset{\sim}{\rightarrow}(x) \Gamma_{\mu} q(x) \quad, \Gamma_{\mu} \in\left\{\mathbf{1}, \gamma_{\mu}, \gamma_{5} \gamma_{\mu}, \ldots\right\}
$$

@ 1st order

$$
\frac{\partial E_{\lambda}}{\partial \lambda}=\frac{1}{2 E_{\lambda}}\langle\langle 0| \mathcal{O} \mid 0\rangle \quad \xrightarrow{\left\lvert\, \begin{array}{ll}
\mathbf{E}_{\lambda} \rightarrow \text { spectroscopy, 2-pt function }
\end{array}\right.} \begin{aligned}
& \text { Applications: } \\
& \circ \sigma-\text { terms } \\
& \langle 0| \mathcal{O}|0\rangle \rightarrow \text { determine 3-pt }
\end{aligned}
$$

Compton Amplitude from FHT at $2^{\text {nd }}$ order

unpolarised Compton Amplitude

$$
T_{\mu \mu}(p, q)=\int d^{4} z e^{i \mathbf{q} \cdot \mathbf{z}}\langle N(p)| \mathscr{T}\left\{J_{\mu}(z) J_{\mu}(0)\right\}|N(p)\rangle
$$

$$
\begin{aligned}
& \text { Action modification } \\
& S \rightarrow S(\lambda)=S+\lambda \int d^{4} z\left(e^{i \mathbf{q} \cdot \mathbf{z}}+e^{-i \mathbf{q} \cdot \mathbf{z}}\right) J_{\mu}(z) \quad J_{\mu}(z)=\sum_{q} e_{q} \bar{q}(z) \gamma_{\mu} q(z) \\
& \qquad\left.\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right|_{\lambda=0} ^{\text {local EM current }}=-\frac{1}{2 E_{N}(\mathbf{p})} \overbrace{\int d^{4} z e^{i \mathbf{q} \cdot \mathbf{z}}\langle N(p)| \mathscr{T}\left\{J_{\mu}(z) J_{\mu}(0)\right\}|N(p)\rangle}^{T_{\mu \mu}(p, q)}+q \rightarrow-q
\end{aligned}
$$

Determine the Compton Amplitude from second order energy shifts!

Compton Amplitude from FHT at 2 nd order

- Spectral decomposition of a 2-point nucleon correlator in an external field, Ω_{λ},

$$
G_{\lambda}^{(2)}(\mathbf{p} ; t) \equiv \int d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \boldsymbol{\Gamma}\left\langle\Omega_{\lambda}\right| \chi(\mathbf{x}, t) \bar{\chi}(0)\left|\Omega_{\lambda}\right\rangle \simeq A_{\lambda}(\mathbf{p}) e^{-E_{N_{\lambda}}(\mathbf{p}) t}
$$

- Take the $2^{\text {nd }}$ order derivative,

Non-Breit frame, $|\mathbf{p}| \neq|\mathbf{p} \pm \mathbf{q}| \Rightarrow 0$

$$
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=e^{-E_{N}(\mathbf{p}) t}\left[\frac{\partial^{2} A_{\lambda}(\mathbf{p})}{\partial \lambda^{2}}-t\left(2 \frac{\partial A_{\lambda}(\mathbf{p})}{\partial \lambda} \frac{\partial E_{\nu_{\lambda}}(\mathbf{p})}{\partial \lambda}+A(\mathbf{p}) \frac{\partial^{2} E_{N_{\lambda}}}{\partial \lambda^{2}}\right)+t^{2} A(\mathbf{p})\left(\frac{\partial E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda}\right)^{2}\right]
$$

$$
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\left(\frac{\partial^{2} A_{\lambda}(\mathbf{p})}{\partial \lambda^{2}}-t A\left(\mathbf{p}\left(\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right) e^{-E_{N}(\mathbf{p}) t}\right.\right.
$$

temporal enhancement $\sim t e^{-E_{N}(\mathbf{p}) t}$

Compton Amplitude from FHT at 2 nd order

- 2-point nucleon correlator in path integral formalism,

$$
\begin{array}{ll}
{ }_{\lambda}\langle\chi(\mathbf{x}, t) \bar{\chi}(0)\rangle_{\lambda}=\frac{1}{\mathcal{Z}(\lambda)} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \chi(\mathbf{x}, t) \bar{\chi}(0) e^{-S(\lambda)}, & \text { where } \\
& S(\lambda)=S+\lambda \int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right) \mathcal{J}_{\mu}(z)
\end{array}
$$

for simplicity define: $\mathcal{G}=\int d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \boldsymbol{\Gamma} \chi(\mathbf{x}, t) \bar{\chi}(0)$

- Take the $2^{\text {nd }}$ order derivative,

$$
\begin{aligned}
& \frac{\partial^{2}\langle\mathcal{G}\rangle_{\lambda}}{\partial \lambda^{2}}=\langle\mathcal{G}\rangle_{\lambda}\left\langle\frac{\partial^{2} S(\lambda)}{\partial \lambda^{2}}\right\rangle_{\lambda}+\left\langle\mathcal{G} \frac{\partial^{2} S(\lambda)}{\partial \lambda^{2}}\right\rangle_{\lambda}+\langle\mathcal{G}\rangle_{\lambda}\left\langle\left(\frac{\partial S(\lambda)}{\partial \lambda}\right)^{2}\right\rangle_{\lambda}+2\langle\mathcal{G}\rangle_{\lambda}\left\langle\frac{\partial S(\lambda)}{\partial \lambda}\right\rangle_{\lambda}\left\langle\frac{\partial S(\lambda)}{\partial \lambda}\right\rangle_{\lambda}-2\left\langle\mathcal{G} \frac{\partial S(\lambda)}{\partial \lambda}\right\rangle_{\lambda}\left\langle\frac{\partial S(\lambda)}{\partial \lambda}\right\rangle_{\lambda}+\left\langle\mathcal{G}\left(\frac{\partial S(\lambda)}{\partial \lambda}\right)_{\lambda}^{2}\right\rangle_{\lambda} \\
& \text { no quadratic perturbation }=0 \\
& \text { does not vanish in general, } \\
& \text { but only affects the free-field } \\
& \text { correlator } \\
& \text { as } \lambda \rightarrow 0 \text {, vacuum m.e. of ext. current }\langle\partial S(\lambda) / \partial \lambda\rangle=0 \text {, } \\
& \text { given that the operator does not carry vacuum quantum numbers. } \\
& \text { EM current satisfies this condition. }
\end{aligned}
$$

- Thus the second order energy shift comes from,

$$
\left.\frac{\partial^{2}\langle\mathcal{G}\rangle_{\lambda}}{\partial \lambda^{2}}\right|_{\lambda=0}=\left\langle\mathcal{G}\left(\frac{\partial S(\lambda)}{\partial \lambda}\right)^{2}\right\rangle+\ldots
$$

Compton Amplitude from FHT at 2 nd order

- back to full form,

$$
\begin{gathered}
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; y)}{\partial \lambda^{2}}\right|_{\lambda=0}=\int d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \boldsymbol{\Gamma}\left\langle\chi(\mathbf{x}, t) \bar{\chi}(0)\left(\frac{\partial S(\lambda)}{\partial \lambda}\right)^{2}\right\rangle, \text { where } \frac{\partial S(\lambda)}{\partial \lambda}=\int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right) \mathcal{J}_{\mu}(z) \\
\text { note that }\langle\cdots\rangle \text { is evaluated in the absence of the external field }
\end{gathered}
$$

- writing the $2^{\text {nd }}$ order derivative explicitly,

$$
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\int d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \boldsymbol{\Gamma} \int d^{4} y d^{4} z\left(e^{i \mathbf{q} \cdot \mathbf{y}}+e^{-i \mathbf{q} \cdot \mathbf{y}}\right)\left(e^{i \mathbf{q} \cdot \mathbf{z}}+e^{-i \mathbf{q} \cdot \mathbf{z}}\right)\left\langle\chi(\mathbf{x}, t) \mathcal{J}_{\mu}(z) \mathcal{J}_{\mu}(y) \bar{\chi}(0)\right\rangle
$$

Compton Amplitude from FHT at 2nd order

- possible time orderings and their contributions:

$$
\sim \underset{\text { no time enhancement }}{\sim e_{N}^{-E_{X} t}, \quad E_{X} \gtrsim}
$$

$$
\left.\begin{array}{cccc}
\mathcal{J}\left(z_{4}\right) & \chi(t) & \bar{\chi}(0) & \mathcal{J}\left(y_{4}\right) \\
-\mathbf{-} & \mathbf{8} & \mathbf{8} & \mathbf{8}
\end{array}\right) \sim \begin{gathered}
e^{-E_{X} t}, \quad E_{X} \gtrsim E_{N} \\
\text { no time enhancement }
\end{gathered}
$$

there is time enhancement,
but due to non-Breit frame kinematics $\rightarrow 0$

Compton Amplitude from FHT at 2 nd order
relevant contribution comes from the ordering where the currents are sandwiched

$$
\sim t \int^{t} d \Delta e^{-\Delta\left(E_{X}(\mathbf{p}+\mathbf{q})-E_{N}(\mathbf{p})\right)}
$$

discrete set of states
$\mathbf{p}=2 \pi / L(-1,-1,0) \quad$.
under the condition $|\omega|<1$, $E_{X}(\mathbf{p}+n \mathbf{q}) \gtrsim E_{N}(\mathbf{p})$, so the intermediate states cannot go on-shell
ground state dominance is ensured in the large time limit

Compton Amplitude from FHT at 2 nd order

- relevant contribution comes from the ordering where the currents are sandwiched

$$
\chi(t) \quad \mathcal{J}\left(z_{4}\right) \quad \mathcal{J}\left(y_{4}\right) \quad \bar{\chi}(0)
$$

$$
\begin{array}{ll}
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=2 \int d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \int d^{3} y d^{3} z \int_{0}^{t} d \tau^{\prime} \int_{0}^{\tau^{\prime}} d \tau\left(e^{i \mathbf{q} \cdot \mathbf{y}}+e^{-i \mathbf{q} \cdot \mathbf{y}}\right)\left(e^{i \mathbf{q} \cdot \mathbf{z}}+e^{-i \mathbf{q} \cdot \mathbf{z}}\right) \boldsymbol{\Gamma}\langle\chi(x)| \mathcal{J}_{\mu}\left(\mathbf{z}, \tau^{\prime}\right) \mathcal{J}_{\mu}(\mathbf{y}, \tau)|\bar{\chi}(0)\rangle \\
\text { insert sets of complete states, and use translational invariance, } & \sum_{X}|X\rangle\langle X| \\
\sum_{Y}|Y\rangle\langle Y|
\end{array}
$$

$$
\begin{aligned}
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}= & 2 \int d^{3} y d^{3} z \int_{0}^{t} d \tau^{\prime} \int_{0}^{\tau^{\prime}} d \tau \sum_{X, Y} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{-E_{X}(\mathbf{p}) t} e^{-\left(E_{Y}(\mathbf{k})-E_{X}(\mathbf{p})\right) \tau}}{4 E_{X}(\mathbf{p}) E_{Y}(\mathbf{k})} e^{i(\mathbf{k}-\mathbf{p}) \cdot \mathbf{y}}\left(e^{i \mathbf{q} \cdot \mathbf{y}}+e^{-i \mathbf{q} \cdot \mathbf{y}}\right)\left(e^{i \boldsymbol{q} \cdot \mathbf{z}}+e^{-i \mathbf{q} \cdot \mathbf{z}}\right) \\
& \times \boldsymbol{\Gamma}\langle\Omega| \chi(0)|X(\mathbf{p})\rangle\langle X(\mathbf{p})| \mathcal{J}_{\mu}\left(\mathbf{z}-\mathbf{y}, \tau^{\prime}-\tau\right) \mathcal{J}_{\mu}(\mathbf{0}, 0)|Y(\mathbf{k})\rangle\langle Y(\mathbf{k})| \bar{\chi}(0)|\Omega\rangle .
\end{aligned}
$$

carrying out the integrals and the remaining algebra,

$$
\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\frac{A(\mathbf{p})}{2 E_{N}(\mathbf{p})} t e^{-E_{N}(\mathbf{p}) t} \int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right)\langle N(\mathbf{p})| \mathcal{T}\{\mathcal{J}(z) \mathcal{J}(0)\}|N(\mathbf{p})\rangle
$$

Compton Amplitude from FHT at 2 nd order

$\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\left(\frac{\partial^{2} A_{\lambda}(\mathbf{p})}{\partial \lambda^{2}}-t A(\mathbf{p}) \frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right) e^{-E_{N}(\mathbf{p}) t}$
$\left.\frac{\partial^{2} G_{\lambda}^{(2)}(\mathbf{p} ; t)}{\partial \lambda^{2}}\right|_{\lambda=0}=\frac{A(\mathbf{p})}{2 E_{N}(\mathbf{p})} t e^{-E_{N}(\mathbf{p}) t} \int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right)\langle N(\mathbf{p})| \mathcal{T}\{\mathcal{J}(z) \mathcal{J}(0)\}|N(\mathbf{p})\rangle$

- equate the time-enhanced terms:

$$
T_{\mu \mu}(p, q)+T_{\mu \mu}(p,-q)
$$

$$
\left.\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right|_{\lambda=0}=-\frac{1}{2 E_{N}(\mathbf{p})} \overbrace{\int d^{4} z\left(e^{i q \cdot z}+e^{-i q \cdot z}\right)\langle N(\mathbf{p})| \mathcal{J}(z) \mathcal{J}(0)|N(\mathbf{p})\rangle}
$$

the Nucleon Structure Functions

- Feynman-Hellmann Theorem \&
the Comnton Amnlitude
- Moments of the Nucleon Structure Functions

Lattice Details

- Valence u/d quarks with modified action, $S(\lambda)$
- Local EM current insertion, $J_{\mu}(x)=Z_{V} \bar{q}(x) \gamma_{\mu} q(x)$ with $Z_{V}=0.8611(84)$
- Feynman-Hellmann implementation at the valence quark level
- 4 Distinct field strengths, $\lambda=[\pm 0.0125, \pm 0.025]$
- 5 different current momenta in the range, $3 \lesssim Q^{2} \lesssim 7 \mathrm{GeV}^{2}$
- $\mathcal{O}\left(10^{4}\right)$ measurements for each pair of Q^{2} and λ
- Access to a range of ω values for several (p, q) pairs
- An inversion for each q and λ, varying p is relatively cheap
- Connected 2-pt correlators calculated only, no disconnected
- Jacobi-smeared sources and sinks, rms $r \sim 0.5 \mathrm{fm}$
- Statistics from 200 bootstrap samples

II Strategy | Kinematic coverage

- Access to a range of ω values for several (p, q) pairs

External momentum

$$
\vec{q}=(3,5,0) \frac{2 \pi}{L}
$$

Can access different ω by varying the nucleon momenta

$$
\begin{array}{r}
\omega=\frac{2 P \cdot q}{Q^{2}}=\frac{2 \vec{P} \cdot \vec{q}}{\vec{q}^{2}} \\
q_{4}=0
\end{array}
$$

Strategy | Energy shifts

Extract energy shifts for each λ

Ratio of perturbed to unperturbed 2-pt functions

$$
\begin{aligned}
R_{\lambda}^{e}(\mathbf{p}, t) & \equiv \frac{G_{+\lambda}^{(2)}(\mathbf{p}, t) G_{-\lambda}^{(2)}(\mathbf{p}, t)}{\left(G^{(2)}(\mathbf{p}, t)\right)^{2}} \\
& \xrightarrow{\gg 0} A_{\lambda}(\mathbf{p}) e^{-2 \Delta E_{N_{\lambda}}^{e}(\mathbf{p}) t}
\end{aligned}
$$

|Strategy | Energy shifts

[^0]Extract energy shifts for each λ

- Get the 2nd order der vative

Ratio of perturbed to unperturbed 2-pt functions

$$
\begin{aligned}
R_{\lambda}^{e}(\mathbf{p}, t) & \equiv \frac{G_{+\lambda}^{(2)}(\mathbf{p}, t) G_{-\lambda}^{(2)}(\mathbf{p}, t)}{\left(G^{(2)}(\mathbf{p}, t)\right)^{2}} \\
& \xrightarrow{t \gg 0} A_{\lambda}(\mathbf{p}) e^{-2 \Delta E_{N_{\lambda}}^{e}(\mathbf{p}) t}
\end{aligned}
$$

Slope of the curve

$$
\Delta E_{N_{\lambda}}^{e}(\mathbf{p})=\frac{\lambda^{2}}{2} \frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}{ }_{\lambda=\mathbf{0}}+\mathcal{O}\left(\lambda^{4}\right)
$$

IStrategy | Structure Functions
 $a=0.074 \mathrm{fm}$ $m_{\pi} \sim 470 \mathrm{MeV}$
 $32^{3} \times 64,2+1$ flavour

$$
\mathbf{q}=(4,1,0) 2 \pi / L, Q^{2}=4.66 G e V^{2}
$$

Remember our kinematic choices

$$
\mu=\nu=3 \text { and } p_{z}=q_{z}=0
$$

$$
T_{33}(p, q)=\mathscr{F}_{1}\left(\omega, Q^{2}\right)
$$

$$
\begin{aligned}
\left.\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial^{2} \lambda}\right|_{\lambda=\mathbf{0}} & =-\frac{T_{33}(p, q)+T_{33}(p,-q)}{2 E_{N}(\mathbf{p})} \\
& =-\frac{\mathscr{F}_{1}\left(\omega, Q^{2}\right)}{E_{N}(\mathbf{p})}
\end{aligned}
$$

fixed \mathbf{q} varying $\mathbf{p} \rightarrow$ range of ω values $\quad \omega=1 / x=\frac{2 p \cdot q}{Q^{2}}$

Moments | Fit
 $a=0.074 \mathrm{fm}$
 $m_{\pi} \sim 470 \mathrm{MeV}$
 $32^{3} \times 64,2+1$ flavour
 Remember:
 $T_{33}(p, q)=\sum_{n=1}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right)$
 $T_{33}(p, q)=\mathscr{F}_{1}\left(\omega, Q^{2}\right)$

$$
\begin{array}{r}
\overline{\mathscr{F}}_{1}\left(\omega, Q^{2}\right)=4\left(\omega^{2} M_{2}^{(1)}\left(Q^{2}\right)+\omega^{4} M_{4}^{(1)}\left(Q^{2}\right)\right. \\
\left.+\cdots+\omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right)+\cdots \cdot \cdot\right)
\end{array}
$$

- Enforce monotonic decreasing of moments for u and d only, not necessarily true for $u-d$

$$
M_{2}^{(1)}\left(Q^{2}\right) \geq M_{4}^{(1)}\left(Q^{2}\right) \geq \cdots \geq M_{2 n}^{(1)}\left(Q^{2}\right) \geq \cdots \geq 0
$$

We truncate at $n=6$
No dependence to truncation order for $3 \leq n \leq 10$

- Bayesian approach by MCMC method - least-squares fluctuates,

Sample the moments from Uniform priors individually for u - and d-quark

$$
\begin{aligned}
& M_{2}^{(1)}\left(Q^{2}\right) \sim \mathscr{U}(0,1) \\
& M_{2 n}^{(1)}\left(Q^{2}\right) \sim \mathscr{U}\left(0, M_{2 n-2}^{(1)}\left(Q^{2}\right)\right)
\end{aligned}
$$

tricky to impose monotonic deceasing and positivity bound
Multivariate Likelihood function, $\exp \left(-\chi^{2} / 2\right)$

$$
\begin{gathered}
\chi^{2}=\sum_{i, j}\left[\overline{\mathscr{F}}_{1, i}-\overline{\mathscr{F}}_{1} o b s\left(\omega_{i}\right)\right] C_{i j}^{1}\left[\overline{\mathscr{F}}_{1, j}-\overline{\mathscr{F}}_{1} o b s\left(\omega_{j}\right)\right] \\
\text { covariance matrix }
\end{gathered}
$$

Scaling

$$
\begin{aligned}
& a=0.074 \mathrm{fm} \\
& m_{\pi} \sim 470 \mathrm{MeV} \\
& 32^{3} \times 64,2+1 \text { flavour }
\end{aligned}
$$

- Unique ability to study the Q^{2} dependence of the moments!
 Possible for the first time in a lattice simulation!
- Global PDF-fit cuts $\sim 10 \mathrm{GeV}^{2}$
- Credible scaling region $\sim 16 \mathrm{GeV}^{2}$
- Need $Q^{2}>10 G e V^{2}$ data to reliably extract moments and report at $\mu=2 \mathrm{GeV}$

Scaling

Power Corrections

$$
\begin{aligned}
& a=0.074 \mathrm{fm} \\
& m_{\pi} \sim 470 \mathrm{MeV} \\
& 32^{3} \times 64,2+1 \text { flavour }
\end{aligned}
$$

- Compton amplitude includes all possible power corrections!

- Power corrections below $\sim 3 \mathrm{GeV}^{2}$?
- naïve modelling via
- $M_{2 n}^{(1)}\left(Q^{2}\right)=M_{2 n}^{(1)}+C_{2 n} / Q^{2}$
- Need more statistics and lower Q^{2} data

Outlook

- Preliminary data points from $48^{3} \times 96$ configurations

Higher Twist
pure Twist- 4 contributions
$u d$ interference term

- Twist-4 contributions: ud interference term

vanishes asymptotically $\sim 1 / Q^{2}$

Higher Twist

slide courtesy of Ross Young (Pacific Spin 2019)

- $\mathscr{F}_{2}\left(\omega, Q^{2}\right)$

$$
\begin{aligned}
& T_{\mu \nu}(p, q)=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \mathscr{F}_{1}\left(\omega, Q^{2}\right)+\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right) \frac{\mathscr{F}_{2}\left(\omega, Q^{2}\right)}{p \cdot q} \\
& \hat{\mu}_{\mu}=\nu=3 \text { and } \\
& p_{z}=q_{z}=0 \quad \Longrightarrow \quad T_{33}\left(\omega, Q^{2}\right)=-g_{33} \mathscr{F}_{1}\left(\omega, Q^{2}\right)
\end{aligned}
$$

- $\mu=\nu=4$ and $p_{4}=i E_{N}, q_{4}=0$:

$$
\begin{aligned}
T_{44}(p, q) & =-g_{44} \mathscr{F}_{1}\left(\omega, Q^{2}\right)+\frac{E_{N}^{2}}{p \cdot q} \mathscr{F}_{2}\left(\omega, Q^{2}\right), \text { where } p \cdot q=Q^{2} \omega / 2 \\
\mathscr{F}_{2}\left(\omega, Q^{2}\right) & =\left[T_{44}(p, q)+T_{33}(p, q)\right] \frac{Q^{2} \omega}{2 E_{N}^{2}}
\end{aligned} \begin{aligned}
& T_{44} \text { can be extracted via FH approach } \\
& \text { simply by choosing the temporal }
\end{aligned}
$$

F_{2} and F_{L}

- F_{L} and the Callan-Gross Relation

$$
\begin{gathered}
F_{L}\left(x, Q^{2}\right) \equiv\left(1+\frac{4 M_{N}^{2} x^{2}}{Q^{2}}\right) F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right) \quad \underset{Q^{2} \rightarrow \infty}{\longrightarrow} 0 \\
\mathscr{F}_{1}\left(\omega, Q^{2}\right)=4 \omega^{2} \int_{0}^{1} d x \frac{x F_{1}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}}=\sum_{n=1}^{\infty} 2 \omega^{2 n} M_{2 n}^{(1)}\left(Q^{2}\right), \quad M_{2 n}^{(1)}\left(Q^{2}\right)=2 \int_{0}^{1} d x x^{2 n-1} F_{1}\left(x, Q^{2}\right) \\
\mathscr{F}_{2}\left(\omega, Q^{2}\right)=4 \omega^{2} \int_{0}^{1} d x \frac{F_{2}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}}=\sum_{n=1}^{\infty} 4 \omega^{2 n-1} M_{2 n}^{(2)}\left(Q^{2}\right), \quad M_{2 n}^{(2)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{2 n-2} F_{2}\left(x, Q^{2}\right)
\end{gathered}
$$

$$
M_{2}^{(L)}\left(Q^{2}\right) \equiv M_{2}^{(2)}\left(Q^{2}\right)+\frac{4 M_{N}^{2}}{Q^{2}} M_{4}^{(2)}\left(Q^{2}\right)-M_{2}^{(1)}\left(Q^{2}\right) \text { in terms of moments }
$$

Callan-Gross tests

$a=0.068 \mathrm{fm}$
$m_{\pi} \sim 410 \mathrm{MeV}$
$48^{3} \times 96,2+1$ flavour

Subtraction term

- Cottingham formula:

$$
\begin{aligned}
& \delta M^{\gamma}=\delta M^{\mathrm{el}}+\delta M^{\mathrm{inel}}+\delta M^{\mathrm{sub}}+\delta \tilde{M}^{\mathrm{ct}} \\
& \delta M^{\mathrm{sub}} \sim-\frac{3 \alpha_{e m}}{16 \pi M} \int^{\Lambda_{0}^{2}} d Q^{2} T_{1}^{p-n}\left(0, Q^{2}\right)
\end{aligned}
$$

EM self energy is related to the spin-avg. forward Compton amplitude

- Subtraction term $T_{1}\left(0, Q^{2}\right)$
$\mathscr{F}_{1}\left(\omega, Q^{2}\right)-\mathscr{F}_{1}\left(\omega=0, Q^{2}\right)=\frac{2 \omega^{2}}{\pi} \int_{1}^{\infty} d \omega^{\prime} \frac{\operatorname{Im} \mathscr{F}_{1}\left(\omega^{\prime}, Q^{2}\right)}{\omega^{\prime}\left(\omega^{\prime 2}-\omega^{2}-i \epsilon\right)}$
- dominant uncertainty
- not accessible via experiments
- can be calculated via FH approach

- J. Lozano, A. Agadjanov, J. Gegelia, U.-G. Meissner

- A new versatile approach!
- Systematic investigation of power corrections, higher-twist effects and scaling is within reach
- Overcomes the operator mixing/renormalisation issues
- Can be extended to:
- mixed currents, interference terms (work in progress...)
- spin-dependent structure functions
- GPDs (A. Hannaford-Gunn, M. Phil. thesis, Uni. of Adelaide (2020))

Backup Slides

- Preliminary data points from $48^{3} \times 96$ configurations

PDFs

- determining the PDFs $\mid \mathrm{x}$-coverage

$$
\begin{array}{rlrl}
T_{33}\left(\omega, Q^{2}\right) & =\overline{\mathcal{F}}_{1}\left(\omega, Q^{2}\right)=4 \omega^{2} \int_{0}^{1} d x \frac{x F_{1}\left(x, Q^{2}\right)}{1-x^{2} \omega^{2}} & \leftarrow \text { formalism in } \omega \text { space } \\
& \equiv \int_{0}^{1} d x K(x, \omega) F_{1}\left(x, Q^{2}\right), & & \leftarrow \text { back to } \boldsymbol{x} \text { space, inverse problem }!
\end{array}
$$

- Fredholm integral eq. of the 1st kind: an ill-posed problem
starting from the phenom. ansatz

$$
\begin{aligned}
& F_{1}\left(x, Q^{2}\right) \equiv p^{\mathrm{val}}(a, b, c)=\frac{a x^{b}(1-x)^{c} \Gamma(b+c+3)}{\Gamma(b+2) \Gamma(c+1)} \\
& T_{33}^{\mathrm{val}}(\omega)=4 a \omega^{2}{ }_{3} F_{2}\left[\begin{array}{c}
1,(b+2) / 2,(b+3) / 2 \\
(b+c+3) / 2,(b+c+4) / 2
\end{array} ; \omega^{2}\right]=4 a \omega^{2}\left(c_{0}(a, b, c)+c_{1}(a, b, c) \omega^{2}\right.
\end{aligned} \begin{aligned}
& \text { evaluate the dispersion integral } \\
& \text { generalised hypergeometric function } \quad \begin{array}{c}
\\
\left.+c_{2}(a, b, c) \omega^{4}+\cdots+c_{n}(a, b, c) \omega^{2 n}+\cdots\right)
\end{array}
\end{aligned}
$$

[^0]: $a=0.074 \mathrm{fm}$
 $m_{\pi} \sim 470 \mathrm{MeV}$
 $32^{3} \times 64,2+1$ flavour

